These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25375457)

  • 1. Thermodynamic bounds and general properties of optimal efficiency and power in linear responses.
    Jiang JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042126. PubMed ID: 25375457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry.
    Benenti G; Saito K; Casati G
    Phys Rev Lett; 2011 Jun; 106(23):230602. PubMed ID: 21770492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Onsager Coefficients in Periodically Driven Systems.
    Proesmans K; Van den Broeck C
    Phys Rev Lett; 2015 Aug; 115(9):090601. PubMed ID: 26371634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines.
    Yamamoto S; Ito S; Shiraishi N; Sagawa T
    Phys Rev E; 2016 Nov; 94(5-1):052121. PubMed ID: 27967007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic bounds on currents in Langevin systems.
    Dechant A; Sasa SI
    Phys Rev E; 2018 Jun; 97(6-1):062101. PubMed ID: 30011501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field.
    Brandner K; Saito K; Seifert U
    Phys Rev Lett; 2013 Feb; 110(7):070603. PubMed ID: 25166361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry.
    Jiang JH; Agarwalla BK; Segal D
    Phys Rev Lett; 2015 Jul; 115(4):040601. PubMed ID: 26252673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exactly solvable two-terminal heat engine with asymmetric Onsager coefficients: Origin of the power-efficiency bound.
    Lee JS; Park JM; Chun HM; Um J; Park H
    Phys Rev E; 2020 May; 101(5-1):052132. PubMed ID: 32575278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-dissipation heat devices: unified trade-off optimization and bounds.
    de Tomas C; Roco JM; Hernández AC; Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012105. PubMed ID: 23410281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-Efficiency-Dissipation Relations in Linear Thermodynamics.
    Proesmans K; Cleuren B; Van den Broeck C
    Phys Rev Lett; 2016 Jun; 116(22):220601. PubMed ID: 27314707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onsager coefficients for systems with periodic potentials.
    Rosas A; Van den Broeck C; Lindenberg K
    Phys Rev E; 2016 Nov; 94(5-1):052129. PubMed ID: 27967176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.
    Guo J; Wang J; Wang Y; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines.
    Astumian RD
    Biophys J; 2015 Jan; 108(2):291-303. PubMed ID: 25606678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency at maximum power of a discrete feedback ratchet.
    Jarillo J; Tangarife T; Cao FJ
    Phys Rev E; 2016 Jan; 93(1):012142. PubMed ID: 26871058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric efficiency in three-terminal graphene nano-junctions.
    Sartipi Z; Hayati A; Vahedi J
    J Chem Phys; 2018 Sep; 149(11):114103. PubMed ID: 30243286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium.
    Parmeggiani A; Jülicher F; Ajdari A; Prost J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2127-40. PubMed ID: 11970005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal Bounds on Fluctuations in Continuous Thermal Machines.
    Saryal S; Gerry M; Khait I; Segal D; Agarwalla BK
    Phys Rev Lett; 2021 Nov; 127(19):190603. PubMed ID: 34797144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance analysis of energy conversion via caloric effects in first-order ferroic phase transformations.
    Song Y
    Phys Chem Chem Phys; 2014 Jul; 16(25):12750-63. PubMed ID: 24836947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onsager coefficients of a finite-time Carnot cycle.
    Izumida Y; Okuda K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021121. PubMed ID: 19792091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations.
    Cerino L; Puglisi A; Vulpiani A
    Phys Rev E; 2016 Apr; 93():042116. PubMed ID: 27176263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.