These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 25375577)
1. Number of first-passage times as a measurement of information for weakly chaotic systems. Nazé P; Venegeroles R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042917. PubMed ID: 25375577 [TBL] [Abstract][Full Text] [Related]
2. Pesin-type identity for intermittent dynamics with a zero Lyaponov exponent. Korabel N; Barkai E Phys Rev Lett; 2009 Feb; 102(5):050601. PubMed ID: 19257495 [TBL] [Abstract][Full Text] [Related]
3. Separation of trajectories and its relation to entropy for intermittent systems with a zero Lyapunov exponent. Korabel N; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016209. PubMed ID: 20866709 [TBL] [Abstract][Full Text] [Related]
4. Exact invariant measures: How the strength of measure settles the intensity of chaos. Venegeroles R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062914. PubMed ID: 26172779 [TBL] [Abstract][Full Text] [Related]
5. Lyapunov statistics and mixing rates for intermittent systems. Pires CJ; Saa A; Venegeroles R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066210. PubMed ID: 22304181 [TBL] [Abstract][Full Text] [Related]
7. Statistics of finite-time Lyapunov exponents in a random time-dependent potential. Schomerus H; Titov M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066207. PubMed ID: 12513384 [TBL] [Abstract][Full Text] [Related]
9. Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems. van Beijeren H; Latz A; Dorfman JR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016312. PubMed ID: 11304358 [TBL] [Abstract][Full Text] [Related]
10. "Metric" complexity for weakly chaotic systems. Galatolo S Chaos; 2007 Mar; 17(1):013116. PubMed ID: 17411252 [TBL] [Abstract][Full Text] [Related]
11. Dynamical localization in chaotic systems: spectral statistics and localization measure in the kicked rotator as a paradigm for time-dependent and time-independent systems. Manos T; Robnik M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062905. PubMed ID: 23848746 [TBL] [Abstract][Full Text] [Related]
12. Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium. de Wijn AS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046211. PubMed ID: 15903774 [TBL] [Abstract][Full Text] [Related]
13. Phase resetting effects for robust cycles between chaotic sets. Ashwin P; Field M; Rucklidge AM; Sturman R Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190 [TBL] [Abstract][Full Text] [Related]
14. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos. Pazó D; López JM; Politi A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750 [TBL] [Abstract][Full Text] [Related]
15. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. Thiffeault JL; Boozer AH Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437 [TBL] [Abstract][Full Text] [Related]
16. Distributions of time averages for weakly chaotic systems: the role of infinite invariant density. Korabel N; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032114. PubMed ID: 24125221 [TBL] [Abstract][Full Text] [Related]
17. Algorithmic information for interval maps with an indifferent fixed point and infinite invariant measure. Bonanno C; Galatolo S Chaos; 2004 Sep; 14(3):756-62. PubMed ID: 15446985 [TBL] [Abstract][Full Text] [Related]
18. Statistics of Poincaré recurrences for maps with integrable and ergodic components. Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057 [TBL] [Abstract][Full Text] [Related]
19. Driven interfaces in random media at finite temperature: existence of an anomalous zero-velocity phase at small external force. Monthus C; Garel T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041133. PubMed ID: 18999405 [TBL] [Abstract][Full Text] [Related]
20. Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments. Charbonneau P; Li YC; Pfister HD; Yaida S Phys Rev E; 2017 Sep; 96(3-1):032129. PubMed ID: 29346975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]