These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25375593)

  • 1. Class of periodic and quasiperiodic trajectories of particles settling under gravity in a viscous fluid.
    Ekiel-Jeżewska ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043007. PubMed ID: 25375593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic and quasiperiodic motions of many particles falling in a viscous fluid.
    Gruca M; Bukowicki M; Ekiel-Jeżewska ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023026. PubMed ID: 26382522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic stability and sedimentation waves in settling periodic arrays.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051402. PubMed ID: 14682796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size segregation in a fluid-like or gel-like suspension settling under gravity or in a centrifuge.
    Snabre P; Pouligny B
    Langmuir; 2008 Dec; 24(23):13338-47. PubMed ID: 18986182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brownian dynamics simulations of a dispersion composed of two-types of spherical particles: for development of a new technology to improve the visibility of rivers and lakes.
    Satoh A; Taneko E
    J Colloid Interface Sci; 2009 Oct; 338(1):236-42. PubMed ID: 19595358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse gradient diffusion in a polydisperse dilute suspension of magnetic spheres during sedimentation.
    Cunha FR; Couto HL
    J Phys Condens Matter; 2008 May; 20(20):204129. PubMed ID: 21694258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle Shape Influences Settling and Sorting Behavior in Microfluidic Domains.
    Başağaoğlu H; Succi S; Wyrick D; Blount J
    Sci Rep; 2018 Jun; 8(1):8583. PubMed ID: 29872129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic particle sedimentation in a rotating flow with time-periodic strength.
    Angilella JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066310. PubMed ID: 19256948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles.
    Zhang P; Galindo-Torres SA; Tang H; Jin G; Scheuermann A; Li L
    Phys Rev E; 2016 Jun; 93(6):062612. PubMed ID: 27415325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimenting pairs of elastic microfilaments.
    Bukowicki M; Ekiel-Jeżewska ML
    Soft Matter; 2019 Nov; 15(46):9405-9417. PubMed ID: 31620754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.
    Ryzhov EA; Koshel KV
    Chaos; 2015 Oct; 25(10):103108. PubMed ID: 26520074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stratification-induced reorientation of disk settling through ambient density transition.
    Mrokowska MM
    Sci Rep; 2018 Jan; 8(1):412. PubMed ID: 29323150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric study of particle sedimentation by dissipative particle dynamics simulation.
    Yang L; Yin H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033311. PubMed ID: 25314568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Settling slip velocity of a spherical particle in an unbounded micropolar fluid.
    El-Sapa S
    Eur Phys J E Soft Matter; 2019 Mar; 42(3):32. PubMed ID: 30879156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force.
    van Hinsberg MA; Clercx HJ; Toschi F
    Phys Rev E; 2017 Feb; 95(2-1):023106. PubMed ID: 28297963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving finite-size particles in a flow: a physical example of pitchfork bifurcations of tori.
    Zahnow JC; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026215. PubMed ID: 18352111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern formation in a rotating suspension of non-Brownian settling particles.
    Matson WR; Ackerson BJ; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):050301. PubMed ID: 12786120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular band formation for incompressible viscous fluid-rigid-particle mixtures in a rotating cylinder.
    Hou S; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023013. PubMed ID: 25353577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sedimentation dynamics of spherical particles in confined geometries.
    Kuusela E; Lahtinen JM; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066310. PubMed ID: 15244729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of particles settling in shear-thinning fluids. Part 2. Three-particle aggregation.
    Daugan S; Talini L; Herzhaft B; Allain C
    Eur Phys J E Soft Matter; 2002 Sep; 9(1):55-62. PubMed ID: 15010930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.