These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25375594)

  • 1. Electroviscous resistance of nanofluidic bends.
    Berry JD; Foong AE; Lade CE; Biscombe CJ; Davidson MR; Harvie DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043008. PubMed ID: 25375594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic energy conversion efficiency in nanofluidic channels.
    van der Heyden FH; Bonthuis DJ; Stein D; Meyer C; Dekker C
    Nano Lett; 2006 Oct; 6(10):2232-7. PubMed ID: 17034089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced electrokinetic transport in micro-nanofluidic interconnect devices.
    Jin X; Joseph S; Gatimu EN; Bohn PW; Aluru NR
    Langmuir; 2007 Dec; 23(26):13209-22. PubMed ID: 17999544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary transport of two immiscible fluids in presence of electroviscous retardation.
    Bandopadhyay A; Mandal S; Chakraborty S
    Electrophoresis; 2017 Mar; 38(5):747-754. PubMed ID: 27981589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT
    Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of electrokinetic transport in silica nanofluidic channels.
    Wang M; Kang Q; Ben-Naim E
    Anal Chim Acta; 2010 Apr; 664(2):158-64. PubMed ID: 20363398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of presence of salt on the dynamics of water in uncharged nanochannels.
    Bakli C; Chakraborty S
    J Chem Phys; 2013 Feb; 138(5):054504. PubMed ID: 23406130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A charge-driven molecular water pump.
    Gong X; Li J; Lu H; Wan R; Li J; Hu J; Fang H
    Nat Nanotechnol; 2007 Nov; 2(11):709-12. PubMed ID: 18654410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows.
    Das T; Das S; Chakraborty S
    J Chem Phys; 2009 Jun; 130(24):244904. PubMed ID: 19566178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofluidic ionic diodes. Comparison of analytical and numerical solutions.
    Vlassiouk I; Smirnov S; Siwy Z
    ACS Nano; 2008 Aug; 2(8):1589-602. PubMed ID: 19206361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical studies on liquid properties in extended nanospaces using mercury microelectrodes.
    Tsukahara T; Kuwahata T; Hibara A; Kim HB; Mawatari K; Kitamori T
    Electrophoresis; 2009 Sep; 30(18):3212-8. PubMed ID: 19722213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate.
    Nilsson S; Erlandsson PG; Robinson ND
    PLoS One; 2015; 10(12):e0144065. PubMed ID: 26629907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration polarization, surface currents, and bulk advection in a microchannel.
    Nielsen CP; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043020. PubMed ID: 25375606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion correlations in nanofluidic channels: effects of ion size, valence, and concentration on voltage- and pressure-driven currents.
    Hoffmann J; Gillespie D
    Langmuir; 2013 Jan; 29(4):1303-17. PubMed ID: 23286510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics.
    Andreou C; Hoonejani MR; Barmi MR; Moskovits M; Meinhart CD
    ACS Nano; 2013 Aug; 7(8):7157-64. PubMed ID: 23859441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the current transition regimes in nanochannels.
    Villegas A; Berardi D; Javier Diez F
    Electrophoresis; 2019 Mar; 40(5):740-747. PubMed ID: 30511780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
    Xuan X; Li D
    Electrophoresis; 2007 Feb; 28(4):627-34. PubMed ID: 17304496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge.
    Joseph S; Aluru NR
    Langmuir; 2006 Oct; 22(21):9041-51. PubMed ID: 17014152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.