These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25375594)

  • 21. Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge.
    Joseph S; Aluru NR
    Langmuir; 2006 Oct; 22(21):9041-51. PubMed ID: 17014152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of a microcapillary impedimetric transducer to changes in surface conductance at liquid/solid interface.
    Bratov A; Abramova N
    J Colloid Interface Sci; 2013 Aug; 403():151-6. PubMed ID: 23684227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow.
    Hsu WL; Harvie DJ; Davidson MR; Jeong H; Goldys EM; Inglis DW
    Lab Chip; 2014 Sep; 14(18):3539-49. PubMed ID: 25027204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrokinetic transport of charged solutes in micro- and nanochannels: the influence of transverse electromigration.
    Xuan X; Li D
    Electrophoresis; 2006 Dec; 27(24):5020-31. PubMed ID: 17124708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isoelectric focusing in a silica nanofluidic channel: effects of electromigration and electroosmosis.
    Hsu WL; Inglis DW; Startsev MA; Goldys EM; Davidson MR; Harvie DJ
    Anal Chem; 2014 Sep; 86(17):8711-8. PubMed ID: 25098739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From repulsion to attraction and back to repulsion: the effect of NaCl, KCl, and CsCl on the force between silica surfaces in aqueous solution.
    Dishon M; Zohar O; Sivan U
    Langmuir; 2009 Mar; 25(5):2831-6. PubMed ID: 19437699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrokinetic flow-induced currents in silica nanofluidic channels.
    Choi YS; Kim SJ
    J Colloid Interface Sci; 2009 May; 333(2):672-8. PubMed ID: 19251271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers.
    Chen L; Conlisk AT
    Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.
    Gillespie D; Khair AS; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure-driven flow control system for nanofluidic chemical process.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Kitamori T
    J Chromatogr A; 2006 Dec; 1137(2):256-62. PubMed ID: 17129585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043016. PubMed ID: 25375602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries.
    Chein R; Tsai K; Yeh L
    Electrophoresis; 2010 Jan; 31(3):535-45. PubMed ID: 20119963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow.
    Ban H; Lin B; Song Z
    Biomicrofluidics; 2010 Feb; 4(1):14104. PubMed ID: 20644673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and fabrication of nanofluidic devices by surface micromachining.
    Han A; de Rooij NF; Staufer U
    Nanotechnology; 2006 May; 17(10):2498-503. PubMed ID: 21727495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements.
    Das S; Chakraborty S
    Electrophoresis; 2008 Mar; 29(5):1115-24. PubMed ID: 18232026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction.
    Tsukahara T; Mawatari K; Hibara A; Kitamori T
    Anal Bioanal Chem; 2008 Aug; 391(8):2745-52. PubMed ID: 18581104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion separation in nanofluidics.
    Xuan X
    Electrophoresis; 2008 Sep; 29(18):3737-43. PubMed ID: 18850643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.