BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25375602)

  • 1. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043016. PubMed ID: 25375602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially uniform microflows induced by thermoviscous expansion along a traveling temperature wave: analogies with electro-osmotic transport.
    Pal D; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016321. PubMed ID: 23005539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of pressure acoustics with thermoviscous boundary layers and streaming in elastic cavities.
    Joergensen JH; Bruus H
    J Acoust Soc Am; 2021 May; 149(5):3599. PubMed ID: 34241087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic wave propagation in thermoviscous moving fluid confined by heating pipeline and flow measurement performance.
    Chen Y; Huang Y; Chen X
    J Acoust Soc Am; 2013 Sep; 134(3):1863-74. PubMed ID: 23967920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063018. PubMed ID: 26764815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.
    Solovchuk M; Sheu TW; Thiriet M
    J Acoust Soc Am; 2013 Nov; 134(5):3931-42. PubMed ID: 24180802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow patterns and transport in Rayleigh surface acoustic wave streaming: combined finite element method and raytracing numerics versus experiments.
    Frommelt T; Gogel D; Kostur M; Talkner P; Hänggi P; Wixforth A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2298-305. PubMed ID: 18986877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic rheology of non-Newtonian liquids.
    Girardo S; Cingolani R; Pisignano D
    Anal Chem; 2007 Aug; 79(15):5856-61. PubMed ID: 17602569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid.
    Wang J; Dual J
    J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from Boundary-Driven to Bulk-Driven Acoustic Streaming Due to Nonlinear Thermoviscous Effects at High Acoustic Energy Densities.
    Joergensen JH; Qiu W; Bruus H
    Phys Rev Lett; 2023 Jan; 130(4):044001. PubMed ID: 36763435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation microstreaming generated by a bubble pair in an ultrasound field.
    Wang C; Cheng J
    J Acoust Soc Am; 2013 Aug; 134(2):1675-82. PubMed ID: 23927208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct methods for characterizing high-intensity focused ultrasound transducers using acoustic streaming.
    Myers MR; Hariharan P; Banerjee RK
    J Acoust Soc Am; 2008 Sep; 124(3):1790-802. PubMed ID: 19045669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of fluid medium flow and spatial temperature variation on acoustophoretic motion of microparticles in microfluidic channels.
    Liu Z; Kim YJ; Wang H; Han A
    J Acoust Soc Am; 2016 Jan; 139(1):332-49. PubMed ID: 26827029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.
    Chen Y; Huang Y; Chen X
    J Acoust Soc Am; 2013 Oct; 134(4):2619-22. PubMed ID: 24116397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.