These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 25375603)
1. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Nizkaya TV; Asmolov ES; Vinogradova OI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603 [TBL] [Abstract][Full Text] [Related]
2. Drag force on a sphere moving toward an anisotropic superhydrophobic plane. Asmolov ES; Belyaev AV; Vinogradova OI Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026330. PubMed ID: 21929113 [TBL] [Abstract][Full Text] [Related]
3. Effective slip over superhydrophobic surfaces in thin channels. Feuillebois F; Bazant MZ; Vinogradova OI Phys Rev Lett; 2009 Jan; 102(2):026001. PubMed ID: 19257293 [TBL] [Abstract][Full Text] [Related]
4. Effective hydrodynamic boundary conditions for microtextured surfaces. Mongruel A; Chastel T; Asmolov ES; Vinogradova OI Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):011002. PubMed ID: 23410274 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamic drag-force measurement and slip length on microstructured surfaces. Maali A; Pan Y; Bhushan B; Charlaix E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066310. PubMed ID: 23005209 [TBL] [Abstract][Full Text] [Related]
6. Slippery Wenzel State. Dai X; Stogin BB; Yang S; Wong TS ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154 [TBL] [Abstract][Full Text] [Related]
7. High friction on a bubble mattress. Steinberger A; Cottin-Bizonne C; Kleimann P; Charlaix E Nat Mater; 2007 Sep; 6(9):665-8. PubMed ID: 17643106 [TBL] [Abstract][Full Text] [Related]
9. Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Joseph P; Cottin-Bizonne C; Benoît JM; Ybert C; Journet C; Tabeling P; Bocquet L Phys Rev Lett; 2006 Oct; 97(15):156104. PubMed ID: 17155344 [TBL] [Abstract][Full Text] [Related]
10. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417 [TBL] [Abstract][Full Text] [Related]
11. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces. Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996 [TBL] [Abstract][Full Text] [Related]
12. Fractal Model for Drag Reduction on Multiscale Nonwetting Rough Surfaces. Hatte S; Pitchumani R Langmuir; 2020 Dec; 36(47):14386-14402. PubMed ID: 33197195 [TBL] [Abstract][Full Text] [Related]
13. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. Bhushan B; Wang Y; Maali A Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Prakash S; Xi E; Patel AJ Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619 [TBL] [Abstract][Full Text] [Related]
15. Spectral Analysis of the Slip-Length Model for Turbulence over Textured Superhydrophobic Surfaces. Fairhall CT; García-Mayoral R Flow Turbul Combust; 2018; 100(4):961-978. PubMed ID: 30069146 [TBL] [Abstract][Full Text] [Related]
17. Role of rough surface topography on gas slip flow in microchannels. Zhang C; Chen Y; Deng Z; Shi M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537 [TBL] [Abstract][Full Text] [Related]
18. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance. Roach P; McHale G; Evans CR; Shirtcliffe NJ; Newton MI Langmuir; 2007 Sep; 23(19):9823-30. PubMed ID: 17705513 [TBL] [Abstract][Full Text] [Related]
19. Slip flow of diverse liquids on robust superomniphobic surfaces. Wu Y; Cai M; Li Z; Song X; Wang H; Pei X; Zhou F J Colloid Interface Sci; 2014 Jan; 414():9-13. PubMed ID: 24231078 [TBL] [Abstract][Full Text] [Related]
20. Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol. Li Y; Pan Y; Zhao X Beilstein J Nanotechnol; 2017; 8():2504-2514. PubMed ID: 29259865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]