These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25375641)

  • 1. Trm4 and Nsun2 RNA:m5C methyltransferases form metabolite-dependent, covalent adducts with previously methylated RNA.
    Moon HJ; Redman KL
    Biochemistry; 2014 Nov; 53(45):7132-44. PubMed ID: 25375641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of protein-RNA complexes using natural RNA and mutant forms of an RNA cytosine methyltransferase.
    Redman KL
    Biomacromolecules; 2006 Dec; 7(12):3321-6. PubMed ID: 17154459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase.
    Walbott H; Husson C; Auxilien S; Golinelli-Pimpaneau B
    RNA; 2007 Jul; 13(7):967-73. PubMed ID: 17475914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA).
    Brzezicha B; Schmidt M; Makalowska I; Jarmolowski A; Pienkowska J; Szweykowska-Kulinska Z
    Nucleic Acids Res; 2006; 34(20):6034-43. PubMed ID: 17071714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases.
    Bujnicki JM; Feder M; Ayres CL; Redman KL
    Nucleic Acids Res; 2004; 32(8):2453-63. PubMed ID: 15121902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine.
    King MY; Redman KL
    Biochemistry; 2002 Sep; 41(37):11218-25. PubMed ID: 12220187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes.
    Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of Methanocaldococcus jannaschii Trm4 complexed with sinefungin.
    Kuratani M; Hirano M; Goto-Ito S; Itoh Y; Hikida Y; Nishimoto M; Sekine S; Bessho Y; Ito T; Grosjean H; Yokoyama S
    J Mol Biol; 2010 Aug; 401(3):323-33. PubMed ID: 20600111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Proteomic Discovery of Isotype-Selective Covalent Inhibitors of the RNA Methyltransferase NSUN2.
    Tao Y; Felber JG; Zou Z; Njomen E; Remsberg JR; Ogasawara D; Ye C; Melillo B; Schreiber SL; He C; Remillard D; Cravatt BF
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202311924. PubMed ID: 37909922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NSUN2-mediated m
    Zuo S; Li L; Wen X; Gu X; Zhuang A; Li R; Ye F; Ge S; Fan X; Fan J; Chai P; Lu L
    Clin Transl Med; 2023 May; 13(5):e1273. PubMed ID: 37228185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of DNA methylation on transformation of Saccharomyces cerevisiae].
    Lebenka AIu
    Genetika; 1988 Nov; 24(11):1935-9. PubMed ID: 3069581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts.
    Liu Y; Santi DV
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8263-5. PubMed ID: 10899996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism-based strategies for trapping and crystallizing complexes of RNA-modifying enzymes.
    Guelorget A; Golinelli-Pimpaneau B
    Structure; 2011 Mar; 19(3):282-91. PubMed ID: 21397180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation and Site-Specific Covalent Labeling of
    Zhao J; Hu H; Wang S; Wang L; Wang R
    Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs.
    Hussain S; Sajini AA; Blanco S; Dietmann S; Lombard P; Sugimoto Y; Paramor M; Gleeson JG; Odom DT; Ule J; Frye M
    Cell Rep; 2013 Jul; 4(2):255-61. PubMed ID: 23871666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adenosine dialdehyde on S-adenosylhomocysteine hydrolase and S-adenosylmethionine-dependent transmethylations in mouse L929 cells.
    Bartel RL; Borchardt RT
    Mol Pharmacol; 1984 May; 25(3):418-24. PubMed ID: 6727864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NSUN2 affects diabetic retinopathy progression by regulating MUC1 expression through RNA m
    Wang R; Xue W; Kan F; Zhang H; Wang D; Wang L; Wang J
    J Transl Med; 2024 May; 22(1):476. PubMed ID: 38764010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer.
    Chellamuthu A; Gray SG
    Cells; 2020 Jul; 9(8):. PubMed ID: 32708015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NSUN2 promotes osteosarcoma progression by enhancing the stability of FABP5 mRNA via m
    Yang M; Wei R; Zhang S; Hu S; Liang X; Yang Z; Zhang C; Zhang Y; Cai L; Xie Y
    Cell Death Dis; 2023 Feb; 14(2):125. PubMed ID: 36792587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.