These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25375698)

  • 1. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction.
    Ma Y; Danilishin SL; Zhao C; Miao H; Korth WZ; Chen Y; Ward RL; Blair DG
    Phys Rev Lett; 2014 Oct; 113(15):151102. PubMed ID: 25375698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters.
    Miao H; Ma Y; Zhao C; Chen Y
    Phys Rev Lett; 2015 Nov; 115(21):211104. PubMed ID: 26636839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors.
    Zhao Y; Aritomi N; Capocasa E; Leonardi M; Eisenmann M; Guo Y; Polini E; Tomura A; Arai K; Aso Y; Huang YC; Lee RK; Lück H; Miyakawa O; Prat P; Shoda A; Tacca M; Takahashi R; Vahlbruch H; Vardaro M; Wu CM; Barsuglia M; Flaminio R
    Phys Rev Lett; 2020 May; 124(17):171101. PubMed ID: 32412296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative cavity photon spectral function in an optomechanical system with two parametrically-driven mechanical modes.
    Motazedifard A; Dalafi A; Naderi MH
    Opt Express; 2023 Oct; 31(22):36615-36637. PubMed ID: 38017809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical side-band cooling of a low frequency optomechanical system.
    Eerkens HJ; Buters FM; Weaver MJ; Pepper B; Welker G; Heeck K; Sonin P; de Man S; Bouwmeester D
    Opt Express; 2015 Mar; 23(6):8014-20. PubMed ID: 25837139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of extraneous thermal noise in cavity optomechanics.
    Zhao Y; Wilson DJ; Ni KK; Kimble HJ
    Opt Express; 2012 Feb; 20(4):3586-612. PubMed ID: 22418119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing optical loss from modal frequency degeneracy in a long optical cavity.
    Fang Q; Blair CD; Zhao C; Blair DG
    Opt Express; 2021 Jul; 29(15):23902-23915. PubMed ID: 34614646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High bandwidth frequency lock of a rigid tunable optical cavity.
    Millo J; Merzougui M; Di Pace S; Chaibi W
    Appl Opt; 2014 Nov; 53(32):7761-72. PubMed ID: 25403002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical motion sensor for resonant-bar gravitational wave antennas.
    Richard JP; Pang Y; Hamilton JJ
    Appl Opt; 1992 Apr; 31(10):1641-5. PubMed ID: 20720800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation.
    Korobko M; Kleybolte L; Ast S; Miao H; Chen Y; Schnabel R
    Phys Rev Lett; 2017 Apr; 118(14):143601. PubMed ID: 28430507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realistic loss estimation due to the mirror surfaces in a 10 meters-long high finesse Fabry-Perot filter-cavity.
    Straniero N; Degallaix J; Flaminio R; Pinard L; Cagnoli G
    Opt Express; 2015 Aug; 23(16):21455-76. PubMed ID: 26367993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath.
    Xu X; Purdy T; Taylor JM
    Phys Rev Lett; 2017 Jun; 118(22):223602. PubMed ID: 28621997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-temperature tests of an optical transducer for resonant gravitational wave detectors.
    Pang Y; Richard JP
    Appl Opt; 1995 Aug; 34(22):4982-8. PubMed ID: 21052342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracavity Squeezing Can Enhance Quantum-Limited Optomechanical Position Detection through Deamplification.
    Peano V; Schwefel HG; Marquardt Ch; Marquardt F
    Phys Rev Lett; 2015 Dec; 115(24):243603. PubMed ID: 26705633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase control of squeezed vacuum states of light in gravitational wave detectors.
    Dooley KL; Schreiber E; Vahlbruch H; Affeldt C; Leong JR; Wittel H; Grote H
    Opt Express; 2015 Apr; 23(7):8235-45. PubMed ID: 25968662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator.
    Tarallo MG; Miller J; Agresti J; D'Ambrosio E; DeSalvo R; Forest D; Lagrange B; Mackowsky JM; Michel C; Montorio JL; Morgado N; Pinard L; Remilleux A; Simoni B; Willems P
    Appl Opt; 2007 Sep; 46(26):6648-54. PubMed ID: 17846659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.
    Wade AR; Mansell GL; McRae TG; Chua SS; Yap MJ; Ward RL; Slagmolen BJ; Shaddock DA; McClelland DE
    Rev Sci Instrum; 2016 Jun; 87(6):063104. PubMed ID: 27370423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.