These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2537572)

  • 1. Adaptation to Pi deprivation of cell Na-dependent Pi uptake: a widespread process.
    Escoubet B; Djabali K; Amiel C
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C322-8. PubMed ID: 2537572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium.
    Waqar MA; Seto J; Chung SD; Hiller-Grohol S; Taub M
    J Cell Physiol; 1985 Sep; 124(3):411-23. PubMed ID: 3850091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells.
    Liu J; Periyasamy SM; Gunning W; Fedorova OV; Bagrov AY; Malhotra D; Xie Z; Shapiro JI
    Kidney Int; 2002 Dec; 62(6):2118-25. PubMed ID: 12427136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate uptake by a kidney cell line (LLC-PK1).
    Rabito CA
    Am J Physiol; 1983 Jul; 245(1):F22-31. PubMed ID: 6869535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deprivation of phosphate increases IGF-II mRNA in MDCK cells but IGFs are not involved in phosphate transport adaptation to phosphate deprivation.
    Ernest S; Coureau C; Escoubet B
    J Endocrinol; 1995 May; 145(2):325-31. PubMed ID: 7616166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the phosphate (Pi) concentration in UMR 106 osteoblast-like cells: effect of Pi, Na+ and K+.
    Kemp GJ; Khouja HI; Ahmado A; Graham R; Russell G; Bevington A
    Cell Biochem Funct; 1993 Mar; 11(1):13-23. PubMed ID: 8384093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells.
    Caverzasio J; Brown CD; Biber J; Bonjour JP; Murer H
    Am J Physiol; 1985 Jan; 248(1 Pt 2):F122-7. PubMed ID: 3970160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent phosphate and alanine transports but sodium-independent hexose transport in type II alveolar epithelial cells in primary culture.
    Clerici C; Soler P; Saumon G
    Biochim Biophys Acta; 1991 Mar; 1063(1):27-35. PubMed ID: 2015259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of Na+/phosphate cotransport in LLC-PK1 cells by 12-O-tetradecanoylphorbol 13-acetate (TPA).
    Mohrmann I; Mohrmann M; Biber J; Murer H
    Biochim Biophys Acta; 1986 Aug; 860(1):35-43. PubMed ID: 3730384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKC and Pi deprivation modulate differently the ubiquitous Na-dependent Pi uptake in MDCK cells.
    Escoubet B; Garestier MC; Cherqui G; Amiel C
    Am J Physiol; 1991 Feb; 260(2 Pt 2):F235-42. PubMed ID: 1996673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent phosphate transport in primary cultures of renal tubule cells from young and adult rats.
    Chen ML; King RS; Armbrecht HJ
    J Cell Physiol; 1990 Jun; 143(3):488-93. PubMed ID: 2162849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury.
    Andreoli SP; McAteer JA; Seifert SA; Kempson SA
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F377-84. PubMed ID: 8214096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple modulation of Na-dependent Pi uptake by cellular Ca in MDCK cells.
    Escoubet B; Garestier MC; Le Grimellec C; Amiel C
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C19-27. PubMed ID: 8338129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of confluence on phosphate transport capacity in cultured renal cell lines.
    Scheinman SJ
    J Cell Physiol; 1988 Apr; 135(1):122-6. PubMed ID: 3366788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to phosphate deprivation in osteoblast-like cells.
    Ha R; Steenbergen DK; Kempson SA
    Cell Biochem Funct; 1993 Jun; 11(2):119-24. PubMed ID: 8324880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-Pi cotransport in LLC-PK1 cells: fast adaptive response to Pi deprivation.
    Biber J; Murer H
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C430-4. PubMed ID: 4061629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent transport of phosphate in LLC-PK1 cells.
    Biber J; Brown CD; Murer H
    Biochim Biophys Acta; 1983 Nov; 735(3):325-30. PubMed ID: 6639944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Na+-dependent phosphate uptake in cultured kidney cells (JTC-12) from monkey.
    Takuwa Y; Ogata E
    Biochem J; 1985 Sep; 230(3):715-21. PubMed ID: 3933482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a parathyroid hormone-responsive phosphate transport system in vitro using cultured renal cells.
    Kinoshita Y; Fukase M; Miyauchi A; Takenaka M; Nakada N; Fujita T
    Endocrinology; 1986 Nov; 119(5):1954-63. PubMed ID: 3021432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1.
    Liu J; Liang M; Liu L; Malhotra D; Xie Z; Shapiro JI
    Kidney Int; 2005 May; 67(5):1844-54. PubMed ID: 15840032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.