These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 25375755)
1. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging. Martin KH; Lindsey BD; Ma J; Lee M; Li S; Foster FS; Jiang X; Dayton PA Sensors (Basel); 2014 Nov; 14(11):20825-42. PubMed ID: 25375755 [TBL] [Abstract][Full Text] [Related]
2. An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging. Yang Y; Tian H; Wang YF; Shu Y; Zhou CJ; Sun H; Zhang CH; Chen H; Ren TL Sensors (Basel); 2013 Jul; 13(8):9624-34. PubMed ID: 23896705 [TBL] [Abstract][Full Text] [Related]
3. High frequency piezoelectric MEMS ultrasound transducers. Mina IG; Kim H; Kim I; Park SK; Choi K; Jackson TN; Tutwiler RL; Trolier-McKinstry S IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2422-30. PubMed ID: 18276533 [TBL] [Abstract][Full Text] [Related]
4. Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations. Liu J; Oakley C; Shandas R Ultrasonics; 2009 Dec; 49(8):765-73. PubMed ID: 19640557 [TBL] [Abstract][Full Text] [Related]
5. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications. Cannata JM; Ritter TA; Chen WH; Silverman RH; Shung KK IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1548-57. PubMed ID: 14682638 [TBL] [Abstract][Full Text] [Related]
6. Design and experimental study of microcantilever ultrasonic detection transducers. Chen X; Stratoudaki T; Sharples SD; Clark M IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2722-32. PubMed ID: 20040409 [TBL] [Abstract][Full Text] [Related]
7. Pulse inversion sequences for mechanically scanned transducers. Frijlink ME; Goertz DE; de Jong N; van der Steen AF IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2154-63. PubMed ID: 18986864 [TBL] [Abstract][Full Text] [Related]
8. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging. Novell A; Legros M; Felix N; Bouakaz A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2733-43. PubMed ID: 20040410 [TBL] [Abstract][Full Text] [Related]
9. Second harmonic and subharmonic for non-linear wideband contrast imaging using a capacitive micromachined ultrasonic transducer array. Novell A; Escoffre JM; Bouakaz A Ultrasound Med Biol; 2013 Aug; 39(8):1500-12. PubMed ID: 23743105 [TBL] [Abstract][Full Text] [Related]
10. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography. Kim J; Li S; Kasoji S; Dayton PA; Jiang X Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426 [TBL] [Abstract][Full Text] [Related]
11. Polyurea thin film ultrasonic transducers for nondestructive testing and medical imaging. Nakazawa M; Kosugi T; Nagatsuka H; Maezawa A; Nakamura K; Ueha S IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2165-74. PubMed ID: 18019256 [TBL] [Abstract][Full Text] [Related]
12. Transducer for harmonic intravascular ultrasound imaging. Vos HJ; Frijlink ME; Droog E; Goertz DE; Blacquière G; Gisolf A; de Jong N; van der Steen AF IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2418-22. PubMed ID: 16463509 [TBL] [Abstract][Full Text] [Related]
13. An ultrasonic transducer transient compensator design based on a simplified Variable Structure Control algorithm. Ma S; Wilkinson AJ; Paulson KS Ultrasonics; 2014 Feb; 54(2):502-15. PubMed ID: 23993746 [TBL] [Abstract][Full Text] [Related]
14. High-frequency (>50 MHz) medical ultrasound linear arrays fabricated from micromachined bulk PZT materials. Liu C; Zhou Q; Djuth FT; Shung KK IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):315-8. PubMed ID: 24626041 [TBL] [Abstract][Full Text] [Related]
15. A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. Ma J; Martin K; Dayton PA; Jiang X IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):870-80. PubMed ID: 24801226 [TBL] [Abstract][Full Text] [Related]
16. Assessing the relationship between the inter-rod coupling and the efficiency of piezocomposite high-intensity focused ultrasound transducers. Chen GS; Pan CC; Lin YL; Cheng JS Ultrasonics; 2014 Mar; 54(3):789-94. PubMed ID: 24269167 [TBL] [Abstract][Full Text] [Related]
17. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer. Frijlink ME; Løvstakken L; Torp H Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153 [TBL] [Abstract][Full Text] [Related]
18. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications. Zahorian J; Hochman M; Xu T; Satir S; Gurun G; Karaman M; Degertekin FL IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2659-67. PubMed ID: 23443701 [TBL] [Abstract][Full Text] [Related]
19. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging. Lindsey BD; Rojas JD; Martin KH; Shelton SE; Dayton PA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1668-87. PubMed ID: 25265176 [TBL] [Abstract][Full Text] [Related]