These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25375769)

  • 1. Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.
    Balashov SP; Imasheva ES; Dioumaev AK; Wang JM; Jung KH; Lanyi JK
    Biochemistry; 2014 Dec; 53(48):7549-61. PubMed ID: 25375769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin.
    Shigeta A; Ito S; Inoue K; Okitsu T; Wada A; Kandori H; Kawamura I
    Biochemistry; 2017 Jan; 56(4):543-550. PubMed ID: 28040890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state NMR analysis of the sodium pump Krokinobacter rhodopsin 2 and its H30A mutant.
    Kaur J; Kriebel CN; Eberhardt P; Jakdetchai O; Leeder AJ; Weber I; Brown LJ; Brown RCD; Becker-Baldus J; Bamann C; Wachtveitl J; Glaubitz C
    J Struct Biol; 2019 Apr; 206(1):55-65. PubMed ID: 29879487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspartate-histidine interaction in the retinal schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum.
    Balashov SP; Petrovskaya LE; Lukashev EP; Imasheva ES; Dioumaev AK; Wang JM; Sychev SV; Dolgikh DA; Rubin AB; Kirpichnikov MP; Lanyi JK
    Biochemistry; 2012 Jul; 51(29):5748-62. PubMed ID: 22738070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved IR spectroscopy reveals mechanistic details of ion transport in the sodium pump Krokinobacter eikastus rhodopsin 2.
    Asido M; Eberhardt P; Kriebel CN; Braun M; Glaubitz C; Wachtveitl J
    Phys Chem Chem Phys; 2019 Feb; 21(8):4461-4471. PubMed ID: 30734791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
    Skopintsev P; Ehrenberg D; Weinert T; James D; Kar RK; Johnson PJM; Ozerov D; Furrer A; Martiel I; Dworkowski F; Nass K; Knopp G; Cirelli C; Arrell C; Gashi D; Mous S; Wranik M; Gruhl T; Kekilli D; Brünle S; Deupi X; Schertler GFX; Benoit RM; Panneels V; Nogly P; Schapiro I; Milne C; Heberle J; Standfuss J
    Nature; 2020 Jul; 583(7815):314-318. PubMed ID: 32499654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved FTIR study of light-driven sodium pump rhodopsins.
    Chen HF; Inoue K; Ono H; Abe-Yoshizumi R; Wada A; Kandori H
    Phys Chem Chem Phys; 2018 Jul; 20(26):17694-17704. PubMed ID: 29938283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.
    Ono H; Inoue K; Abe-Yoshizumi R; Kandori H
    J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared spectroscopic analysis on structural changes around the protonated Schiff base upon retinal isomerization in light-driven sodium pump KR2.
    Tomida S; Ito S; Mato T; Furutani Y; Inoue K; Kandori H
    Biochim Biophys Acta Bioenerg; 2020 Jul; 1861(7):148190. PubMed ID: 32194062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single mutation converts bacterial Na(+) -transporting rhodopsin into an H(+) transporter.
    Mamedov MD; Mamedov AM; Bertsova YV; Bogachev AV
    FEBS Lett; 2016 Sep; 590(17):2827-35. PubMed ID: 27447358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent Bond between the Lys-255 Residue and the Main Chain Is Responsible for Stable Retinal Chromophore Binding and Sodium-Pumping Activity of
    Ochiai S; Ichikawa Y; Tomida S; Furutani Y
    Biochemistry; 2023 Jun; 62(12):1849-1857. PubMed ID: 37243673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-distance perturbation on Schiff base-counterion interactions by His30 and the extracellular Na
    Shigeta A; Ito S; Kaneko R; Tomida S; Inoue K; Kandori H; Kawamura I
    Phys Chem Chem Phys; 2018 Mar; 20(13):8450-8455. PubMed ID: 29537054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of intermediate conformations in the photocycle of the light-driven sodium-pumping rhodopsin KR2.
    Tsujimura M; Ishikita H
    J Biol Chem; 2021; 296():100459. PubMed ID: 33639164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85.
    Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK
    Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2.
    Nishimura N; Mizuno M; Kandori H; Mizutani Y
    J Phys Chem B; 2019 Apr; 123(16):3430-3440. PubMed ID: 30945873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H
    Inoue S; Yoshizawa S; Nakajima Y; Kojima K; Tsukamoto T; Kikukawa T; Sudo Y
    Phys Chem Chem Phys; 2018 Jan; 20(5):3172-3183. PubMed ID: 29034950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric Communication with the Retinal Chromophore upon Ion Binding in a Light-Driven Sodium Ion-Pumping Rhodopsin.
    Otomo A; Mizuno M; Inoue K; Kandori H; Mizutani Y
    Biochemistry; 2020 Feb; 59(4):520-529. PubMed ID: 31887021
    [No Abstract]   [Full Text] [Related]  

  • 20. Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na
    Anashkin VA; Bertsova YV; Mamedov AM; Mamedov MD; Arutyunyan AM; Baykov AA; Bogachev AV
    Photosynth Res; 2018 May; 136(2):161-169. PubMed ID: 28983723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.