These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25375822)

  • 1. Construction of 3D micropatterned surfaces with wormlike and superhydrophilic PEG brushes to detect dysfunctional cells.
    Hou J; Shi Q; Ye W; Fan Q; Shi H; Wong SC; Xu X; Yin J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20868-79. PubMed ID: 25375822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer.
    Hou J; Shi Q; Stagnaro P; Ye W; Jin J; Conzatti L; Yin J
    Colloids Surf B Biointerfaces; 2013 Nov; 111():333-41. PubMed ID: 23838201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] brushes grown from photopatterned halogen initiators by atom transfer radical polymerization.
    Ahmad SA; Leggett GJ; Hucknall A; Chilkoti A
    Biointerphases; 2011 Mar; 6(1):8-15. PubMed ID: 21428690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Aqueous SI-ATRP Grafting of Poly(Oligo(Ethylene Glycol) Methacrylate) Brushes from Benzyl Chloride Macroinitiator Surfaces.
    Rodda AE; Ercole F; Nisbet DR; Forsythe JS; Meagher L
    Macromol Biosci; 2015 Jun; 15(6):799-811. PubMed ID: 25689676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.
    Dong R; Krishnan S; Baird BA; Lindau M; Ober CK
    Biomacromolecules; 2007 Oct; 8(10):3082-92. PubMed ID: 17880179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces.
    Andruzzi L; Senaratne W; Hexemer A; Sheets ED; Ilic B; Kramer EJ; Baird B; Ober CK
    Langmuir; 2005 Mar; 21(6):2495-504. PubMed ID: 15752045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces.
    Xu FJ; Li HZ; Li J; Teo YH; Zhu CX; Kang ET; Neoh KG
    Biosens Bioelectron; 2008 Dec; 24(4):779-86. PubMed ID: 18684612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary release of ascorbic acid and lecithin from core-shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte.
    Shi Q; Fan Q; Ye W; Hou J; Wong SC; Xu X; Yin J
    Colloids Surf B Biointerfaces; 2015 Jan; 125():28-33. PubMed ID: 25437061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions.
    Ameringer T; Ercole F; Tsang KM; Coad BR; Hou X; Rodda A; Nisbet DR; Thissen H; Evans RA; Meagher L; Forsythe JS
    Biointerphases; 2013 Dec; 8(1):16. PubMed ID: 24706129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Fabrication of Hierarchically Thermoresponsive Binary Polymer Pattern for Controlled Cell Adhesion.
    Hou J; Cui L; Chen R; Xu X; Chen J; Yin L; Liu J; Shi Q; Yin J
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700572. PubMed ID: 29314369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions.
    Tugulu S; Klok HA
    Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes.
    Xu D; Yu WH; Kang ET; Neoh KG
    J Colloid Interface Sci; 2004 Nov; 279(1):78-87. PubMed ID: 15380414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization.
    Xu FJ; Zhao JP; Kang ET; Neoh KG; Li J
    Langmuir; 2007 Jul; 23(16):8585-92. PubMed ID: 17622163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active protein-functionalized poly(poly(ethylene glycol) monomethacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization for potential biological applications.
    Xu FJ; Liu LY; Yang WT; Kang ET; Neoh KG
    Biomacromolecules; 2009 Jun; 10(6):1665-74. PubMed ID: 19402738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary polymer brush patterns from facile initiator stickiness for cell culturing.
    Chen L; Li P; Lu X; Wang S; Zheng Z
    Faraday Discuss; 2019 Oct; 219(0):189-202. PubMed ID: 31317169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion.
    Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG
    Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.