BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25375833)

  • 1. Distinct properties of the two isoforms of CDP-diacylglycerol synthase.
    D'Souza K; Kim YJ; Balla T; Epand RM
    Biochemistry; 2014 Dec; 53(47):7358-67. PubMed ID: 25375833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms.
    Xu Y; Mak HY; Lukmantara I; Li YE; Hoehn KL; Huang X; Du X; Yang H
    J Biol Chem; 2019 Nov; 294(45):16740-16755. PubMed ID: 31548309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDP-diacylglycerol synthases regulate the growth of lipid droplets and adipocyte development.
    Qi Y; Kapterian TS; Du X; Ma Q; Fei W; Zhang Y; Huang X; Dawes IW; Yang H
    J Lipid Res; 2016 May; 57(5):767-80. PubMed ID: 26946540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylinositol synthesis at the endoplasmic reticulum.
    Blunsom NJ; Cockcroft S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jan; 1865(1):158471. PubMed ID: 31173893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway.
    Mak HY; Ouyang Q; Tumanov S; Xu J; Rong P; Dong F; Lam SM; Wang X; Lukmantara I; Du X; Gao M; Brown AJ; Gong X; Shui G; Stocker R; Huang X; Chen S; Yang H
    Nat Commun; 2021 Nov; 12(1):6877. PubMed ID: 34824276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content.
    Lykidis A; Jackson PD; Rock CO; Jackowski S
    J Biol Chem; 1997 Dec; 272(52):33402-9. PubMed ID: 9407135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diacylglycerol kinase epsilon is selective for both acyl chains of phosphatidic acid or diacylglycerol.
    Lung M; Shulga YV; Ivanova PT; Myers DS; Milne SB; Brown HA; Topham MK; Epand RM
    J Biol Chem; 2009 Nov; 284(45):31062-73. PubMed ID: 19744926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1.
    Blunsom NJ; Gomez-Espinosa E; Ashlin TG; Cockcroft S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Mar; 1863(3):284-298. PubMed ID: 29253589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis.
    Blunsom NJ; Cockcroft S
    Front Cell Dev Biol; 2020; 8():63. PubMed ID: 32117988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of murine Cds (CDP-diacylglycerol synthase) 1 and 2.
    Inglis-Broadgate SL; Ocaka L; Banerjee R; Gaasenbeek M; Chapple JP; Cheetham ME; Clark BJ; Hunt DM; Halford S
    Gene; 2005 Aug; 356():19-31. PubMed ID: 16023307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in Arabidopsis thaliana.
    Zhou Y; Peisker H; Weth A; Baumgartner W; Dörmann P; Frentzen M
    Plant J; 2013 Sep; 75(5):867-79. PubMed ID: 23711240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria.
    Tamura Y; Harada Y; Nishikawa S; Yamano K; Kamiya M; Shiota T; Kuroda T; Kuge O; Sesaki H; Imai K; Tomii K; Endo T
    Cell Metab; 2013 May; 17(5):709-18. PubMed ID: 23623749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained phospholipase C stimulation of H9c2 cardiomyoblasts by vasopressin induces an increase in CDP-diacylglycerol synthase 1 (CDS1) through protein kinase C and cFos.
    Blunsom NJ; Gomez-Espinosa E; Ashlin TG; Cockcroft S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Jul; 1864(7):1072-1082. PubMed ID: 30862571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of CDP-diacylglycerol synthase activity results in the excretion of inositol by Saccharomyces cerevisiae.
    Shen H; Dowhan W
    J Biol Chem; 1996 Nov; 271(46):29043-8. PubMed ID: 8910557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction.
    Epand RM
    J Membr Biol; 2017 Aug; 250(4):353-366. PubMed ID: 27278236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and physical mapping of the porcine CDS1 and CDS2 genes.
    Mercadé A; Sánchez A; Folch JM
    Anim Biotechnol; 2007; 18(1):23-35. PubMed ID: 17364441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of CDP-diacylglycerol synthase in rat liver mitochondria and microsomes.
    Mok AY; McDougall GE; McMurray WC
    Biochem Cell Biol; 1993; 71(3-4):183-9. PubMed ID: 8398077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and chromosomal localization of two human CDP-diacylglycerol synthase (CDS) genes.
    Halford S; Dulai KS; Daw SC; Fitzgibbon J; Hunt DM
    Genomics; 1998 Nov; 54(1):140-4. PubMed ID: 9806839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a fluorescent analog of CDP-DAG in human skin fibroblasts: characterization of metabolism, distribution, and application to studies of phosphatidylinositol turnover.
    Salman M; Pagano RE
    J Lipid Res; 1997 Mar; 38(3):482-90. PubMed ID: 9101429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic selectivity of cholinephosphotransferase in mouse liver: the Km for CDP-choline depends on diacylglycerol structure.
    Mantel CR; Schulz AR; Miyazawa K; Broxmeyer HE
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):815-20. PubMed ID: 8382052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.