These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 25375861)
1. The role of cis regulatory evolution in maize domestication. Lemmon ZH; Bukowski R; Sun Q; Doebley JF PLoS Genet; 2014 Nov; 10(11):e1004745. PubMed ID: 25375861 [TBL] [Abstract][Full Text] [Related]
2. The genetic architecture of teosinte catalyzed and constrained maize domestication. Yang CJ; Samayoa LF; Bradbury PJ; Olukolu BA; Xue W; York AM; Tuholski MR; Wang W; Daskalska LL; Neumeyer MA; Sanchez-Gonzalez JJ; Romay MC; Glaubitz JC; Sun Q; Buckler ES; Holland JB; Doebley JF Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5643-5652. PubMed ID: 30842282 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Huang J; Gao Y; Jia H; Zhang Z Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495 [TBL] [Abstract][Full Text] [Related]
4. Genetic Architecture of Domestication-Related Traits in Maize. Xue S; Bradbury PJ; Casstevens T; Holland JB Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713 [TBL] [Abstract][Full Text] [Related]
5. The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. Chen Q; Samayoa LF; Yang CJ; Bradbury PJ; Olukolu BA; Neumeyer MA; Romay MC; Sun Q; Lorant A; Buckler ES; Ross-Ibarra J; Holland JB; Doebley JF PLoS Genet; 2020 May; 16(5):e1008791. PubMed ID: 32407310 [TBL] [Abstract][Full Text] [Related]
6. The origin of the naked grains of maize. Wang H; Nussbaum-Wagler T; Li B; Zhao Q; Vigouroux Y; Faller M; Bomblies K; Lukens L; Doebley JF Nature; 2005 Aug; 436(7051):714-9. PubMed ID: 16079849 [TBL] [Abstract][Full Text] [Related]
7. Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. Samayoa LF; Olukolu BA; Yang CJ; Chen Q; Stetter MG; York AM; Sanchez-Gonzalez JJ; Glaubitz JC; Bradbury PJ; Romay MC; Sun Q; Yang J; Ross-Ibarra J; Buckler ES; Doebley JF; Holland JB PLoS Genet; 2021 Dec; 17(12):e1009797. PubMed ID: 34928949 [TBL] [Abstract][Full Text] [Related]
8. Evidence of selection at the ramosa1 locus during maize domestication. Sigmon B; Vollbrecht E Mol Ecol; 2010 Apr; 19(7):1296-311. PubMed ID: 20196812 [TBL] [Abstract][Full Text] [Related]
9. The role of regulatory genes during maize domestication: evidence from nucleotide polymorphism and gene expression. Zhao Q; Thuillet AC; Uhlmann NK; Weber A; Rafalski JA; Allen SM; Tingey S; Doebley J Genetics; 2008 Apr; 178(4):2133-43. PubMed ID: 18430939 [TBL] [Abstract][Full Text] [Related]
10. The potential role of genetic assimilation during maize domestication. Lorant A; Pedersen S; Holst I; Hufford MB; Winter K; Piperno D; Ross-Ibarra J PLoS One; 2017; 12(9):e0184202. PubMed ID: 28886108 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population. Wang X; Chen Q; Wu Y; Lemmon ZH; Xu G; Huang C; Liang Y; Xu D; Li D; Doebley JF; Tian F Mol Plant; 2018 Mar; 11(3):443-459. PubMed ID: 29275164 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. Xu G; Cao J; Wang X; Chen Q; Jin W; Li Z; Tian F Plant Cell; 2019 Sep; 31(9):1990-2009. PubMed ID: 31227559 [TBL] [Abstract][Full Text] [Related]
13. Genetic, evolutionary and plant breeding insights from the domestication of maize. Hake S; Ross-Ibarra J Elife; 2015 Mar; 4():. PubMed ID: 25807085 [TBL] [Abstract][Full Text] [Related]
14. A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication. Chen Q; Samayoa LF; Yang CJ; Olukolu BA; York AM; Sanchez-Gonzalez JJ; Xue W; Glaubitz JC; Bradbury PJ; Romay MC; Sun Q; Buckler ES; Holland JB; Doebley JF Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686607 [TBL] [Abstract][Full Text] [Related]
15. The effects of artificial selection on the maize genome. Wright SI; Bi IV; Schroeder SG; Yamasaki M; Doebley JF; McMullen MD; Gaut BS Science; 2005 May; 308(5726):1310-4. PubMed ID: 15919994 [TBL] [Abstract][Full Text] [Related]
16. Genomic screening for artificial selection during domestication and improvement in maize. Yamasaki M; Wright SI; McMullen MD Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539 [TBL] [Abstract][Full Text] [Related]
17. Complex genetic architecture underlies maize tassel domestication. Xu G; Wang X; Huang C; Xu D; Li D; Tian J; Chen Q; Wang C; Liang Y; Wu Y; Yang X; Tian F New Phytol; 2017 Apr; 214(2):852-864. PubMed ID: 28067953 [TBL] [Abstract][Full Text] [Related]
18. Defining the Role of prolamin-box binding factor1 Gene During Maize Domestication. Lang Z; Wills DM; Lemmon ZH; Shannon LM; Bukowski R; Wu Y; Messing J; Doebley JF J Hered; 2014; 105(4):576-582. PubMed ID: 24683184 [TBL] [Abstract][Full Text] [Related]
19. Genetic basis of kernel nutritional traits during maize domestication and improvement. Fang H; Fu X; Wang Y; Xu J; Feng H; Li W; Xu J; Jittham O; Zhang X; Zhang L; Yang N; Xu G; Wang M; Li X; Li J; Yan J; Yang X Plant J; 2020 Jan; 101(2):278-292. PubMed ID: 31529523 [TBL] [Abstract][Full Text] [Related]
20. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication. Wills DM; Fang Z; York AM; Holland JB; Doebley JF J Hered; 2018 Mar; 109(3):333-338. PubMed ID: 28992108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]