These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25376036)

  • 1. Transfer learning improves supervised image segmentation across imaging protocols.
    van Opbroek A; Ikram MA; Vernooij MW; de Bruijne M
    IEEE Trans Med Imaging; 2015 May; 34(5):1018-30. PubMed ID: 25376036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.
    Opbroek AV; Vernooij MW; Ikram MA; Bruijne M
    Med Image Anal; 2015 Aug; 24(1):245-254. PubMed ID: 26210914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer Learning for Image Segmentation by Combining Image Weighting and Kernel Learning.
    Van Opbroek A; Achterberg HC; Vernooij MW; De Bruijne M
    IEEE Trans Med Imaging; 2019 Jan; 38(1):213-224. PubMed ID: 30047874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.
    Valverde S; Oliver A; Roura E; Pareto D; Vilanova JC; Ramió-Torrentà L; Sastre-Garriga J; Montalban X; Rovira À; Lladó X
    Neuroimage Clin; 2015; 9():640-7. PubMed ID: 26740917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of multiple sclerosis lesions using adaptive dictionary learning.
    Deshpande H; Maurel P; Barillot C
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 1():2-10. PubMed ID: 26055435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Center MRI Carotid Plaque Component Segmentation Using Feature Normalization and Transfer Learning.
    van Engelen A; van Dijk AC; Truijman MT; Van't Klooster R; van Opbroek A; van der Lugt A; Niessen WJ; Kooi ME; de Bruijne M
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1294-305. PubMed ID: 25532205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated MR Images.
    Goetz M; Weber C; Binczyk F; Polanska J; Tarnawski R; Bobek-Billewicz B; Koethe U; Kleesiek J; Stieltjes B; Maier-Hein KH
    IEEE Trans Med Imaging; 2016 Jan; 35(1):184-96. PubMed ID: 26259241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T
    Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.
    Fiot JB; Cohen LD; Raniga P; Fripp J
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):905-15. PubMed ID: 23303595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding.
    Sundaresan V; Zamboni G; Le Heron C; Rothwell PM; Husain M; Battaglini M; De Stefano N; Jenkinson M; Griffanti L
    Neuroimage; 2019 Nov; 202():116056. PubMed ID: 31376518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning.
    Ciritsis A; Boss A; Rossi C
    NMR Biomed; 2018 Jul; 31(7):e3931. PubMed ID: 29697165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions.
    Warfield S; Dengler J; Zaers J; Guttmann CR; Wells WM; Ettinger GJ; Hiller J; Kikinis R
    J Image Guid Surg; 1995; 1(6):326-38. PubMed ID: 9080353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain- and task-specific transfer learning for medical segmentation tasks.
    Zoetmulder R; Gavves E; Caan M; Marquering H
    Comput Methods Programs Biomed; 2022 Feb; 214():106539. PubMed ID: 34875512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated biomedical image segmentation by self-organized model adaptation.
    Wismüller A; Vietze F; Behrends J; Meyer-Baese A; Reiser M; Ritter H
    Neural Netw; 2004; 17(8-9):1327-44. PubMed ID: 15555869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.
    Dolz J; Laprie A; Ken S; Leroy HA; Reyns N; Massoptier L; Vermandel M
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):43-51. PubMed ID: 26206715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and robust segmentation of white blood cell images by self-supervised learning.
    Zheng X; Wang Y; Wang G; Liu J
    Micron; 2018 Apr; 107():55-71. PubMed ID: 29425969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White matter lesion extension to automatic brain tissue segmentation on MRI.
    de Boer R; Vrooman HA; van der Lijn F; Vernooij MW; Ikram MA; van der Lugt A; Breteler MM; Niessen WJ
    Neuroimage; 2009 May; 45(4):1151-61. PubMed ID: 19344687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks.
    Lu Q; Li Y; Ye C
    Med Image Anal; 2021 Aug; 72():102094. PubMed ID: 34004493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.
    Fu JC; Chen CC; Chai JW; Wong ST; Li IC
    Comput Med Imaging Graph; 2010 Jun; 34(4):308-20. PubMed ID: 20042313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated classification of HARDI in vivo data using a support vector machine.
    Schnell S; Saur D; Kreher BW; Hennig J; Burkhardt H; Kiselev VG
    Neuroimage; 2009 Jul; 46(3):642-51. PubMed ID: 19285561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.