BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 25376036)

  • 1. Transfer learning improves supervised image segmentation across imaging protocols.
    van Opbroek A; Ikram MA; Vernooij MW; de Bruijne M
    IEEE Trans Med Imaging; 2015 May; 34(5):1018-30. PubMed ID: 25376036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.
    Opbroek AV; Vernooij MW; Ikram MA; Bruijne M
    Med Image Anal; 2015 Aug; 24(1):245-254. PubMed ID: 26210914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer Learning for Image Segmentation by Combining Image Weighting and Kernel Learning.
    Van Opbroek A; Achterberg HC; Vernooij MW; De Bruijne M
    IEEE Trans Med Imaging; 2019 Jan; 38(1):213-224. PubMed ID: 30047874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.
    Valverde S; Oliver A; Roura E; Pareto D; Vilanova JC; Ramió-Torrentà L; Sastre-Garriga J; Montalban X; Rovira À; Lladó X
    Neuroimage Clin; 2015; 9():640-7. PubMed ID: 26740917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of multiple sclerosis lesions using adaptive dictionary learning.
    Deshpande H; Maurel P; Barillot C
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 1():2-10. PubMed ID: 26055435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Center MRI Carotid Plaque Component Segmentation Using Feature Normalization and Transfer Learning.
    van Engelen A; van Dijk AC; Truijman MT; Van't Klooster R; van Opbroek A; van der Lugt A; Niessen WJ; Kooi ME; de Bruijne M
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1294-305. PubMed ID: 25532205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated MR Images.
    Goetz M; Weber C; Binczyk F; Polanska J; Tarnawski R; Bobek-Billewicz B; Koethe U; Kleesiek J; Stieltjes B; Maier-Hein KH
    IEEE Trans Med Imaging; 2016 Jan; 35(1):184-96. PubMed ID: 26259241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T
    Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.
    Fiot JB; Cohen LD; Raniga P; Fripp J
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):905-15. PubMed ID: 23303595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding.
    Sundaresan V; Zamboni G; Le Heron C; Rothwell PM; Husain M; Battaglini M; De Stefano N; Jenkinson M; Griffanti L
    Neuroimage; 2019 Nov; 202():116056. PubMed ID: 31376518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning.
    Ciritsis A; Boss A; Rossi C
    NMR Biomed; 2018 Jul; 31(7):e3931. PubMed ID: 29697165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions.
    Warfield S; Dengler J; Zaers J; Guttmann CR; Wells WM; Ettinger GJ; Hiller J; Kikinis R
    J Image Guid Surg; 1995; 1(6):326-38. PubMed ID: 9080353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain- and task-specific transfer learning for medical segmentation tasks.
    Zoetmulder R; Gavves E; Caan M; Marquering H
    Comput Methods Programs Biomed; 2022 Feb; 214():106539. PubMed ID: 34875512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated biomedical image segmentation by self-organized model adaptation.
    Wismüller A; Vietze F; Behrends J; Meyer-Baese A; Reiser M; Ritter H
    Neural Netw; 2004; 17(8-9):1327-44. PubMed ID: 15555869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.
    Dolz J; Laprie A; Ken S; Leroy HA; Reyns N; Massoptier L; Vermandel M
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):43-51. PubMed ID: 26206715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and robust segmentation of white blood cell images by self-supervised learning.
    Zheng X; Wang Y; Wang G; Liu J
    Micron; 2018 Apr; 107():55-71. PubMed ID: 29425969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White matter lesion extension to automatic brain tissue segmentation on MRI.
    de Boer R; Vrooman HA; van der Lijn F; Vernooij MW; Ikram MA; van der Lugt A; Breteler MM; Niessen WJ
    Neuroimage; 2009 May; 45(4):1151-61. PubMed ID: 19344687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks.
    Lu Q; Li Y; Ye C
    Med Image Anal; 2021 Aug; 72():102094. PubMed ID: 34004493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.
    Fu JC; Chen CC; Chai JW; Wong ST; Li IC
    Comput Med Imaging Graph; 2010 Jun; 34(4):308-20. PubMed ID: 20042313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated classification of HARDI in vivo data using a support vector machine.
    Schnell S; Saur D; Kreher BW; Hennig J; Burkhardt H; Kiselev VG
    Neuroimage; 2009 Jul; 46(3):642-51. PubMed ID: 19285561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.