These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 25376036)
21. An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Souza R; Lucena O; Garrafa J; Gobbi D; Saluzzi M; Appenzeller S; Rittner L; Frayne R; Lotufo R Neuroimage; 2018 Apr; 170():482-494. PubMed ID: 28807870 [TBL] [Abstract][Full Text] [Related]
22. Automatic segmentation of magnetic resonance images using a decision tree with spatial information. Chao WH; Chen YY; Lin SH; Shih YY; Tsang S Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854 [TBL] [Abstract][Full Text] [Related]
23. Active learning based segmentation of Crohns disease from abdominal MRI. Mahapatra D; Vos FM; Buhmann JM Comput Methods Programs Biomed; 2016 May; 128():75-85. PubMed ID: 27040833 [TBL] [Abstract][Full Text] [Related]
24. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Ngo TA; Lu Z; Carneiro G Med Image Anal; 2017 Jan; 35():159-171. PubMed ID: 27423113 [TBL] [Abstract][Full Text] [Related]
25. A supervised framework for the registration and segmentation of white matter fiber tracts. Mayer A; Zimmerman-Moreno G; Shadmi R; Batikoff A; Greenspan H IEEE Trans Med Imaging; 2011 Jan; 30(1):131-45. PubMed ID: 20716499 [TBL] [Abstract][Full Text] [Related]
26. SemiBoost: boosting for semi-supervised learning. Mallapragada PK; Jin R; Jain AK; Liu Y IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2000-14. PubMed ID: 19762927 [TBL] [Abstract][Full Text] [Related]
27. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing. Ghesu FC; Krubasik E; Georgescu B; Singh V; Yefeng Zheng ; Hornegger J; Comaniciu D IEEE Trans Med Imaging; 2016 May; 35(5):1217-1228. PubMed ID: 27046846 [TBL] [Abstract][Full Text] [Related]
28. [Segmentation of multiple sclerosis lesions based on Markov random fields model for MR images]. Li B; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):861-5. PubMed ID: 19813627 [TBL] [Abstract][Full Text] [Related]
29. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Bauer S; Nolte LP; Reyes M Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):354-61. PubMed ID: 22003719 [TBL] [Abstract][Full Text] [Related]
30. A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation. Tomas-Fernandez X; Warfield SK IEEE Trans Med Imaging; 2015 Jun; 34(6):1349-61. PubMed ID: 25616008 [TBL] [Abstract][Full Text] [Related]
31. Supervised segmentation of MRI brain images using combination of multiple classifiers. Ahmadvand A; Sharififar M; Daliri MR Australas Phys Eng Sci Med; 2015 Jun; 38(2):241-53. PubMed ID: 26130310 [TBL] [Abstract][Full Text] [Related]
32. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. Brosch T; Tang LY; Youngjin Yoo ; Li DK; Traboulsee A; Tam R IEEE Trans Med Imaging; 2016 May; 35(5):1229-1239. PubMed ID: 26886978 [TBL] [Abstract][Full Text] [Related]
33. Weakly supervised histopathology cancer image segmentation and classification. Xu Y; Zhu JY; Chang EI; Lai M; Tu Z Med Image Anal; 2014 Apr; 18(3):591-604. PubMed ID: 24637156 [TBL] [Abstract][Full Text] [Related]
34. Suggestive annotation of brain MR images with gradient-guided sampling. Dai C; Wang S; Mo Y; Angelini E; Guo Y; Bai W Med Image Anal; 2022 Apr; 77():102373. PubMed ID: 35134636 [TBL] [Abstract][Full Text] [Related]
35. Discretely-constrained deep network for weakly supervised segmentation. Peng J; Kervadec H; Dolz J; Ben Ayed I; Pedersoli M; Desrosiers C Neural Netw; 2020 Oct; 130():297-308. PubMed ID: 32721843 [TBL] [Abstract][Full Text] [Related]
36. Constrained-CNN losses for weakly supervised segmentation. Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541 [TBL] [Abstract][Full Text] [Related]
38. Transfer learning by feature-space transformation: A method for Hippocampus segmentation across scanners. van Opbroek A; Achterberg HC; Vernooij MW; Ikram MA; de Bruijne M; Neuroimage Clin; 2018; 20():466-475. PubMed ID: 30128285 [TBL] [Abstract][Full Text] [Related]
39. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
40. Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. van Rikxoort EM; Isgum I; Arzhaeva Y; Staring M; Klein S; Viergever MA; Pluim JP; van Ginneken B Med Image Anal; 2010 Feb; 14(1):39-49. PubMed ID: 19897403 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]