These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25376036)

  • 41. TED: A Tolerant Edit Distance for segmentation evaluation.
    Funke J; Klein J; Moreno-Noguer F; Cardona A; Cook M
    Methods; 2017 Feb; 115():119-127. PubMed ID: 28108198
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys.
    Kline TL; Korfiatis P; Edwards ME; Blais JD; Czerwiec FS; Harris PC; King BF; Torres VE; Erickson BJ
    J Digit Imaging; 2017 Aug; 30(4):442-448. PubMed ID: 28550374
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-supervised MRI tissue segmentation by discriminative clustering.
    Gonçalves N; Nikkilä J; Vigário R
    Int J Neural Syst; 2014 Feb; 24(1):1450004. PubMed ID: 24344692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.
    Simões R; Mönninghoff C; Dlugaj M; Weimar C; Wanke I; van Cappellen van Walsum AM; Slump C
    Magn Reson Imaging; 2013 Sep; 31(7):1182-9. PubMed ID: 23684961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A supervised learning framework for pancreatic islet segmentation with multi-scale color-texture features and rolling guidance filters.
    Huang Y; Liu C; Eisses JF; Husain SZ; Rohde GK
    Cytometry A; 2016 Oct; 89(10):893-902. PubMed ID: 27560544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images.
    Sundaresan V; Zamboni G; Dinsdale NK; Rothwell PM; Griffanti L; Jenkinson M
    Med Image Anal; 2021 Dec; 74():102215. PubMed ID: 34454295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated segmentation of multiple sclerosis lesions by model outlier detection.
    Van Leemput K; Maes F; Vandermeulen D; Colchester A; Suetens P
    IEEE Trans Med Imaging; 2001 Aug; 20(8):677-88. PubMed ID: 11513020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis.
    Cheplygina V; de Bruijne M; Pluim JPW
    Med Image Anal; 2019 May; 54():280-296. PubMed ID: 30959445
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analyzing training information from random forests for improved image segmentation.
    Mahapatra D
    IEEE Trans Image Process; 2014 Apr; 23(4):1504-12. PubMed ID: 24569439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images.
    Zhou Z; Ruan Z
    Magn Reson Imaging; 2007 Apr; 25(3):381-5. PubMed ID: 17371728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.
    Sweeney EM; Vogelstein JT; Cuzzocreo JL; Calabresi PA; Reich DS; Crainiceanu CM; Shinohara RT
    PLoS One; 2014; 9(4):e95753. PubMed ID: 24781953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies.
    Zhang K; Lu W; Marziliano P
    Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI.
    Ghosh S; Chaudhary V
    Comput Med Imaging Graph; 2014 Oct; 38(7):639-49. PubMed ID: 24746606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Femoral cartilage segmentation in knee MRI scans using two stage voxel classification.
    Prasoon A; Igel C; Loog M; Lauze F; Dam EB; Nielsen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5469-72. PubMed ID: 24110974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.
    Azmi R; Pishgoo B; Norozi N; Yeganeh S
    J Med Signals Sens; 2013 Apr; 3(2):94-106. PubMed ID: 24098863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels.
    Schutera M; Rettenberger L; Pylatiuk C; Reischl M
    PLoS One; 2022; 17(2):e0263656. PubMed ID: 35134081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation.
    Khan AR; Cherbuin N; Wen W; Anstey KJ; Sachdev P; Beg MF
    Neuroimage; 2011 May; 56(1):126-39. PubMed ID: 21296166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduced field-of-view DTI segmentation of cervical spine tissue.
    Tang L; Wen Y; Zhou Z; von Deneen KM; Huang D; Ma L
    Magn Reson Imaging; 2013 Nov; 31(9):1507-14. PubMed ID: 23993792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Machine learning applications in cell image analysis.
    Kan A
    Immunol Cell Biol; 2017 Jul; 95(6):525-530. PubMed ID: 28294138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Feature Selection Based on Machine Learning in MRIs for Hippocampal Segmentation.
    Tangaro S; Amoroso N; Brescia M; Cavuoti S; Chincarini A; Errico R; Inglese P; Longo G; Maglietta R; Tateo A; Riccio G; Bellotti R
    Comput Math Methods Med; 2015; 2015():814104. PubMed ID: 26089977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.