BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25376088)

  • 21. Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone.
    Rexhepaj R; Rotte A; Kempe DS; Sopjani M; Föller M; Gehring EM; Bhandaru M; Gruner I; Mack AF; Rubio-Aliaga I; Nässl AM; Daniel H; Kuhl D; Lang F
    Pflugers Arch; 2009 Nov; 459(1):191-202. PubMed ID: 19672619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OSR1 and SPAK Sensitivity of Large-Conductance Ca2+ Activated K+ Channel.
    Elvira B; Singh Y; Warsi J; Munoz C; Lang F
    Cell Physiol Biochem; 2016; 38(4):1652-62. PubMed ID: 27119824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters.
    Geissler S; Zwarg M; Knütter I; Markwardt F; Brandsch M
    FEBS J; 2010 Feb; 277(3):790-5. PubMed ID: 20067523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.
    Fei YJ; Liu JC; Fujita T; Liang R; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(1):39-44. PubMed ID: 9600064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2.
    Sugawara M; Huang W; Fei YJ; Leibach FH; Ganapathy V; Ganapathy ME
    J Pharm Sci; 2000 Jun; 89(6):781-9. PubMed ID: 10824137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological analysis of the function of the mammalian renal peptide transporter expressed in Xenopus laevis oocytes.
    Amasheh S; Wenzel U; Weber WM; Clauss W; Daniel H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):169-74. PubMed ID: 9350627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters.
    Knütter I; Hartrodt B; Tóth G; Keresztes A; Kottra G; Mrestani-Klaus C; Born I; Daniel H; Neubert K; Brandsch M
    FEBS J; 2007 Nov; 274(22):5905-14. PubMed ID: 17944948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells.
    Wenzel U; Gebert I; Weintraut H; Weber WM; Clauss W; Daniel H
    J Pharmacol Exp Ther; 1996 May; 277(2):831-9. PubMed ID: 8627565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate-induced changes in the density of peptide transporter PEPT1 expressed in Xenopus oocytes.
    Mertl M; Daniel H; Kottra G
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1332-43. PubMed ID: 18799652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2.
    Ganapathy ME; Huang W; Wang H; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(2):470-5. PubMed ID: 9610386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport.
    Rexhepaj R; Rotte A; Pasham V; Gu S; Kempe DS; Lang F
    Cell Physiol Biochem; 2010; 25(6):715-22. PubMed ID: 20511717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry.
    Kottra G; Daniel H
    J Physiol; 2001 Oct; 536(Pt 2):495-503. PubMed ID: 11600684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2.
    Chen XZ; Zhu T; Smith DE; Hediger MA
    J Biol Chem; 1999 Jan; 274(5):2773-9. PubMed ID: 9915809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide derivation of poorly absorbable drug allows intestinal absorption via peptide transporter.
    Kikuchi A; Tomoyasu T; Tanaka M; Kanamitsu K; Sasabe H; Maeda T; Odomi M; Tamai I
    J Pharm Sci; 2009 May; 98(5):1775-87. PubMed ID: 18781650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein.
    Groneberg DA; Döring F; Theis S; Nickolaus M; Fischer A; Daniel H
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1172-9. PubMed ID: 11934684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms.
    Döring F; Dorn D; Bachfischer U; Amasheh S; Herget M; Daniel H
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):773-9. PubMed ID: 9003562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced FGF23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK.
    Pathare G; Föller M; Michael D; Walker B; Hierlmeier M; Mannheim JG; Pichler BJ; Lang F
    Kidney Blood Press Res; 2012; 36(1):355-64. PubMed ID: 23235437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of Na(+) coupled phosphate transporter NaPiIIa by janus kinase JAK2.
    Shojaiefard M; Hosseinzadeh Z; Pakladok T; Bhavsar SK; Lang F
    Biochem Biophys Res Commun; 2013 Feb; 431(2):186-91. PubMed ID: 23313484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Downregulation of the osmolyte transporters SMIT and BGT1 by AMP-activated protein kinase.
    Munoz C; Sopjani M; Dërmaku-Sopjani M; Almilaji A; Föller M; Lang F
    Biochem Biophys Res Commun; 2012 Jun; 422(3):358-62. PubMed ID: 22554511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.