BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25376333)

  • 1. Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker.
    Ma W; Wang X; Mao Y; Wang Z; Chen T; Zhao X
    Biotechnol Lett; 2015 Mar; 37(3):609-17. PubMed ID: 25376333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette.
    Huang Y; Li L; Xie S; Zhao N; Han S; Lin Y; Zheng S
    Sci Rep; 2017 Aug; 7(1):7916. PubMed ID: 28801604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum.
    Kim IK; Jeong WK; Lim SH; Hwang IK; Kim YH
    J Microbiol Methods; 2011 Jan; 84(1):128-30. PubMed ID: 20951172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An update of the suicide plasmid-mediated genome editing system in Corynebacterium glutamicum.
    Wang T; Li Y; Li J; Zhang D; Cai N; Zhao G; Ma H; Shang C; Ma Q; Xu Q; Chen N
    Microb Biotechnol; 2019 Sep; 12(5):907-919. PubMed ID: 31180185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene.
    Agaphonov M; Alexandrov A
    FEMS Yeast Res; 2014 Nov; 14(7):1048-54. PubMed ID: 25124534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome.
    Shi T; Wang G; Wang Z; Fu J; Chen T; Zhao X
    PLoS One; 2013; 8(11):e81370. PubMed ID: 24282588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homing endonuclease I-SceI-mediated Corynebacterium glutamicum ATCC 13032 genome engineering.
    Wu M; Xu Y; Yang J; Shang G
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3597-3609. PubMed ID: 32146493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic promoter libraries for Corynebacterium glutamicum.
    Rytter JV; Helmark S; Chen J; Lezyk MJ; Solem C; Jensen PR
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2617-23. PubMed ID: 24458563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.
    Krylov AA; Kolontaevsky EE; Mashko SV
    J Microbiol Methods; 2014 Oct; 105():109-15. PubMed ID: 25087479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica.
    Zhou P; Li X; Qi F
    J Microbiol Methods; 2015 May; 112():70-2. PubMed ID: 25771833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage.
    Yang J; Sun B; Huang H; Jiang Y; Diao L; Chen B; Xu C; Wang X; Liu J; Jiang W; Yang S
    Appl Environ Microbiol; 2014 Jul; 80(13):3826-34. PubMed ID: 24747889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production.
    Zhang W; Gao W; Feng J; Zhang C; He Y; Cao M; Li Q; Sun Y; Yang C; Song C; Wang S
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):8963-73. PubMed ID: 24859524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an engineered strain capable of degrading two isomeric nitrophenols via a sacB- and gfp-based markerless integration system.
    Hu F; Jiang X; Zhang JJ; Zhou NY
    Appl Microbiol Biotechnol; 2014 May; 98(10):4749-56. PubMed ID: 24682475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector.
    Tsuchida Y; Kimura S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1107-15. PubMed ID: 18936936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid.
    Okibe N; Suzuki N; Inui M; Yukawa H
    J Microbiol Methods; 2011 May; 85(2):155-63. PubMed ID: 21362445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple large segment deletion method for Corynebacterium glutamicum.
    Suzuki N; Nonaka H; Tsuge Y; Okayama S; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):151-61. PubMed ID: 15843930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum.
    Tan Y; Xu D; Li Y; Wang X
    Plasmid; 2012 Jan; 67(1):44-52. PubMed ID: 22100974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions.
    Debowski AW; Gauntlett JC; Li H; Liao T; Sehnal M; Nilsson HO; Marshall BJ; Benghezal M
    Helicobacter; 2012 Dec; 17(6):435-43. PubMed ID: 23066820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional removal of selectable markers in Trypanosoma cruzi using a site-specific recombination tool: proof of concept.
    Kangussu-Marcolino MM; Cunha AP; Avila AR; Herman JP; DaRocha WD
    Mol Biochem Parasitol; 2014 Dec; 198(2):71-4. PubMed ID: 25619800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-site genetic modifications in Escherichia coli using lambda-Red recombination and I-SceI cleavage.
    Yang J; Sun B; Huang H; Chen B; Xu C; Wang X; Liu J; Diao L
    Biotechnol Lett; 2015 Oct; 37(10):2011-8. PubMed ID: 26063619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.