These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 25376506)
1. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples. Ghasemi E; Sillanpää M J Sep Sci; 2015 Jan; 38(1):164-9. PubMed ID: 25376506 [TBL] [Abstract][Full Text] [Related]
2. The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. Afkhami A; Madrakian T; Karimi Z J Hazard Mater; 2007 Jun; 144(1-2):427-31. PubMed ID: 17126485 [TBL] [Abstract][Full Text] [Related]
3. Nitrate removal from aqueous solutions by ZnO nanoparticles and chitosan-polystyrene-Zn nanocomposite: Kinetic, isotherm, batch and fixed-bed studies. Keshvardoostchokami M; Babaei S; Piri F; Zamani A Int J Biol Macromol; 2017 Aug; 101():922-930. PubMed ID: 28365288 [TBL] [Abstract][Full Text] [Related]
4. Ultrasound-assisted solid-phase extraction of parabens from environmental and biological samples using magnetic hydroxyapatite nanoparticles as an efficient and regenerable nanosorbent. Ghasemi E; Sillanpää M Mikrochim Acta; 2019 Aug; 186(9):622. PubMed ID: 31410577 [TBL] [Abstract][Full Text] [Related]
5. Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. Sadeghi S; Azhdari H; Arabi H; Moghaddam AZ J Hazard Mater; 2012 May; 215-216():208-16. PubMed ID: 22444035 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. Song J; Kong H; Jang J J Colloid Interface Sci; 2011 Jul; 359(2):505-11. PubMed ID: 21543080 [TBL] [Abstract][Full Text] [Related]
7. Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles. Li Y; Yang Z; Chen Y; Huang L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17321-17332. PubMed ID: 31020528 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. Islam M; Mishra PC; Patel R J Environ Manage; 2010 Sep; 91(9):1883-91. PubMed ID: 20580863 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of nitrate and nitrite anion by modified maize stalks from aqueous solutions. Homagai PL; Poudel R; Paudyal H; Ghimire KN; Bhattarai A Environ Sci Pollut Res Int; 2023 Apr; 30(19):54682-54693. PubMed ID: 36881243 [TBL] [Abstract][Full Text] [Related]
10. Production, characterization and effectiveness of cellulose acetate functionalized ZnO nanocomposite adsorbent for the removal of Se (VI) ions from aqueous media. Gurunathan P; Hari S; Suseela SB; Sankararajan R; Mukannan A Environ Sci Pollut Res Int; 2019 Jan; 26(1):528-543. PubMed ID: 30406595 [TBL] [Abstract][Full Text] [Related]
11. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite. Nie Y; Hu C; Kong C J Hazard Mater; 2012 Sep; 233-234():194-9. PubMed ID: 22841297 [TBL] [Abstract][Full Text] [Related]
12. Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. Saber-Samandari S; Saber-Samandari S; Nezafati N; Yahya K J Environ Manage; 2014 Dec; 146():481-490. PubMed ID: 25199605 [TBL] [Abstract][Full Text] [Related]
13. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region. Moşneag SC; Popescu V; Dinescu A; Borodi G J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):918-24. PubMed ID: 23485242 [TBL] [Abstract][Full Text] [Related]
14. The adsorption of Sb(III) in aqueous solution by Fe2O3-modified carbon nanotubes. Yu T; Zeng C; Ye M; Shao Y Water Sci Technol; 2013; 68(3):658-64. PubMed ID: 23925195 [TBL] [Abstract][Full Text] [Related]
15. Aminopropyltrimethoxysilane- and aminopropyltrimethoxysilane-silver-modified montmorillonite for the removal of nitrate ions. Gatti MN; Fernández LG; Sánchez MP; Parolo ME Environ Technol; 2016 Oct; 37(20):2658-68. PubMed ID: 26930358 [TBL] [Abstract][Full Text] [Related]
16. Microwave-assisted synthesis of hydroxyapatite for the removal of lead(II) from aqueous solutions. Hasret E; Ipekoglu M; Altintas S; Ipekoglu NA Environ Sci Pollut Res Int; 2011 Aug; 19(7):2766-75. PubMed ID: 22307899 [TBL] [Abstract][Full Text] [Related]
17. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis. Mercado DF; Magnacca G; Malandrino M; Rubert A; Montoneri E; Celi L; Bianco Prevot A; Gonzalez MC ACS Appl Mater Interfaces; 2014 Mar; 6(6):3937-46. PubMed ID: 24588498 [TBL] [Abstract][Full Text] [Related]
18. Magnetic nanotechnological devices as efficient tools to improve the quality of water: analysis on a real case. Horst MF; Pizzano A; Spetter C; Lassalle V Environ Sci Pollut Res Int; 2018 Oct; 25(28):28185-28194. PubMed ID: 30073594 [TBL] [Abstract][Full Text] [Related]
19. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. Zhang D; Luo H; Zheng L; Wang K; Li H; Wang Y; Feng H J Hazard Mater; 2012 Nov; 241-242():418-26. PubMed ID: 23092611 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic-assisted recycling of Nile tilapia fish scale biowaste into low-cost nano-hydroxyapatite: Ultrasonic-assisted adsorption for Hg Sricharoen P; Limchoowong N; Nuengmatcha P; Chanthai S Ultrason Sonochem; 2020 May; 63():104966. PubMed ID: 31972376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]