These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25376736)
1. Exciton-Exciton Interaction and Optical Gain in Colloidal CdSe/CdS Dot/Rod Nanocrystals. Saba M; Minniberger S; Quochi F; Roither J; Marceddu M; Gocalinska A; Kovalenko MV; Talapin DV; Heiss W; Mura A; Bongiovanni G Adv Mater; 2009 Dec; 21(48):4942-4946. PubMed ID: 25376736 [TBL] [Abstract][Full Text] [Related]
2. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
3. Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy. Lin ML; Miscuglio M; Polovitsyn A; Leng YC; Martín-García B; Moreels I; Tan PH; Krahne R J Phys Chem Lett; 2019 Feb; 10(3):399-405. PubMed ID: 30626187 [TBL] [Abstract][Full Text] [Related]
4. Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polarization Microscopy at Room Temperature. Vezzoli S; Manceau M; Leménager G; Glorieux Q; Giacobino E; Carbone L; De Vittorio M; Bramati A ACS Nano; 2015 Aug; 9(8):7992-8003. PubMed ID: 26212764 [TBL] [Abstract][Full Text] [Related]
5. Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures. Grennell AN; Utterback JK; Pearce OM; Wilker MB; Dukovic G Nano Lett; 2017 Jun; 17(6):3764-3774. PubMed ID: 28534406 [TBL] [Abstract][Full Text] [Related]
6. Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods. Di Stasio F; Grim JQ; Lesnyak V; Rastogi P; Manna L; Moreels I; Krahne R Small; 2015 Mar; 11(11):1328-34. PubMed ID: 25335769 [TBL] [Abstract][Full Text] [Related]
7. The Impact of Core/Shell Sizes on the Optical Gain Characteristics of CdSe/CdS Quantum Dots. Bisschop S; Geiregat P; Aubert T; Hens Z ACS Nano; 2018 Sep; 12(9):9011-9021. PubMed ID: 30193059 [TBL] [Abstract][Full Text] [Related]
8. Piezoelectric Control of the Exciton Wave Function in Colloidal CdSe/CdS Nanocrystals. Segarra C; Climente JI; Polovitsyn A; Rajadell F; Moreels I; Planelles J J Phys Chem Lett; 2016 Jun; 7(12):2182-8. PubMed ID: 27225599 [TBL] [Abstract][Full Text] [Related]
9. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Taghipour N; Delikanli S; Shendre S; Sak M; Li M; Isik F; Tanriover I; Guzelturk B; Sum TC; Demir HV Nat Commun; 2020 Jul; 11(1):3305. PubMed ID: 32620749 [TBL] [Abstract][Full Text] [Related]
10. Beyond band alignment: hole localization driven formation of three spatially separated long-lived exciton states in CdSe/CdS nanorods. Wu K; Rodríguez-Córdoba WE; Liu Z; Zhu H; Lian T ACS Nano; 2013 Aug; 7(8):7173-85. PubMed ID: 23829512 [TBL] [Abstract][Full Text] [Related]
11. Universal Length Dependence of Rod-to-Seed Exciton Localization Efficiency in Type I and Quasi-Type II CdSe@CdS Nanorods. Wu K; Hill LJ; Chen J; McBride JR; Pavlopolous NG; Richey NE; Pyun J; Lian T ACS Nano; 2015 Apr; 9(4):4591-9. PubMed ID: 25803834 [TBL] [Abstract][Full Text] [Related]
12. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals. Grivas C; Li C; Andreakou P; Wang P; Ding M; Brambilla G; Manna L; Lagoudakis P Nat Commun; 2013; 4():2376. PubMed ID: 23974520 [TBL] [Abstract][Full Text] [Related]
13. Exciton-Phonon Coupling in Single ZnCdSe-Dot/CdS-Rod Nanocrystals with Engineered Band Gaps from Type-II to Type-I. Johst F; Rebmann J; Werners H; Klemeyer L; Kopula Kesavan J; Koziej D; Strelow C; Bester G; Mews A; Kipp T ACS Photonics; 2024 Sep; 11(9):3741-3749. PubMed ID: 39310298 [TBL] [Abstract][Full Text] [Related]
14. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Li Q; Lian T Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164 [TBL] [Abstract][Full Text] [Related]
15. Colloidal-Quantum-Dot Ring Lasers with Active Color Control. le Feber B; Prins F; De Leo E; Rabouw FT; Norris DJ Nano Lett; 2018 Feb; 18(2):1028-1034. PubMed ID: 29283266 [TBL] [Abstract][Full Text] [Related]
16. CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal. Wang Y; Pu C; Lei H; Qin H; Peng X J Am Chem Soc; 2019 Nov; 141(44):17617-17628. PubMed ID: 31610655 [TBL] [Abstract][Full Text] [Related]
17. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: effect of nonuniform rod diameters. Wu K; Rodríguez-Córdoba W; Lian T J Phys Chem B; 2014 Dec; 118(49):14062-9. PubMed ID: 24945594 [TBL] [Abstract][Full Text] [Related]
18. Lasing from dot-in-rod nanocrystals in planar polymer microcavities. Manfredi G; Lova P; Di Stasio F; Rastogi P; Krahne R; Comoretto D RSC Adv; 2018 Apr; 8(23):13026-13033. PubMed ID: 35541227 [TBL] [Abstract][Full Text] [Related]
19. Low Threshold Multiexciton Optical Gain in Colloidal CdSe/CdTe Core/Crown Type-II Nanoplatelet Heterostructures. Li Q; Xu Z; McBride JR; Lian T ACS Nano; 2017 Mar; 11(3):2545-2553. PubMed ID: 28157330 [TBL] [Abstract][Full Text] [Related]
20. A room temperature continuous-wave nanolaser using colloidal quantum wells. Yang Z; Pelton M; Fedin I; Talapin DV; Waks E Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]