These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 25376779)
1. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment. Plank M; Snider J; Kaestner E; Halgren E; Poizner H J Neurophysiol; 2015 Feb; 113(3):740-53. PubMed ID: 25376779 [TBL] [Abstract][Full Text] [Related]
2. Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. White DJ; Congedo M; Ciorciari J; Silberstein RB J Cogn Neurosci; 2012 Mar; 24(3):686-97. PubMed ID: 21812639 [TBL] [Abstract][Full Text] [Related]
3. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Burgess N; Maguire EA; Spiers HJ; O'Keefe J Neuroimage; 2001 Aug; 14(2):439-53. PubMed ID: 11467917 [TBL] [Abstract][Full Text] [Related]
4. Interactions between ego- and allocentric neuronal representations of space. Neggers SF; Van der Lubbe RH; Ramsey NF; Postma A Neuroimage; 2006 May; 31(1):320-31. PubMed ID: 16473025 [TBL] [Abstract][Full Text] [Related]
5. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Weniger G; Ruhleder M; Wolf S; Lange C; Irle E Neuropsychologia; 2009 Jan; 47(1):59-69. PubMed ID: 18789955 [TBL] [Abstract][Full Text] [Related]
6. Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Committeri G; Galati G; Paradis AL; Pizzamiglio L; Berthoz A; LeBihan D J Cogn Neurosci; 2004 Nov; 16(9):1517-35. PubMed ID: 15601516 [TBL] [Abstract][Full Text] [Related]
7. Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex. Pourtois G; Thut G; Grave de Peralta R; Michel C; Vuilleumier P Neuroimage; 2005 May; 26(1):149-63. PubMed ID: 15862215 [TBL] [Abstract][Full Text] [Related]
8. Neural mechanisms of visual attention: object-based selection of a region in space. Arrington CM; Carr TH; Mayer AR; Rao SM J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651 [TBL] [Abstract][Full Text] [Related]
9. Who comes first? The role of the prefrontal and parietal cortex in cognitive control. Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690 [TBL] [Abstract][Full Text] [Related]
10. Human cortical θ during free exploration encodes space and predicts subsequent memory. Snider J; Plank M; Lynch G; Halgren E; Poizner H J Neurosci; 2013 Sep; 33(38):15056-68. PubMed ID: 24048836 [TBL] [Abstract][Full Text] [Related]
11. [A comparative electrophysiological study of regulatory components of working memory in adults and children of 7-8 years old. An analysis of coherence of EEG rhythms]. Machinskaia RI; Kurganskiĭ AV Fiziol Cheloveka; 2012; 38(1):5-19. PubMed ID: 22567832 [TBL] [Abstract][Full Text] [Related]
12. Dissociating the role of the parietal cortex and dorsal hippocampus for spatial information processing. Goodrich-Hunsaker NJ; Hunsaker MR; Kesner RP Behav Neurosci; 2005 Oct; 119(5):1307-15. PubMed ID: 16300437 [TBL] [Abstract][Full Text] [Related]
13. The neural basis for simulated drawing and the semantic implications. Harrington GS; Farias D; Davis CH Cortex; 2009 Mar; 45(3):386-93. PubMed ID: 19111291 [TBL] [Abstract][Full Text] [Related]
14. Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study. Senkowski D; Saint-Amour D; Kelly SP; Foxe JJ Neuroimage; 2007 Jul; 36(3):877-88. PubMed ID: 17481922 [TBL] [Abstract][Full Text] [Related]
15. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI. Rodriguez PF Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652 [TBL] [Abstract][Full Text] [Related]
16. Imagining being somewhere else: neural basis of changing perspective in space. Lambrey S; Doeller C; Berthoz A; Burgess N Cereb Cortex; 2012 Jan; 22(1):166-74. PubMed ID: 21625010 [TBL] [Abstract][Full Text] [Related]
17. Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Save E; Poucet B; Foreman N; Buhot MC Behav Neurosci; 1992 Jun; 106(3):447-56. PubMed ID: 1616611 [TBL] [Abstract][Full Text] [Related]
18. Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Pihlajamäki M; Tanila H; Könönen M; Hänninen T; Hämäläinen A; Soininen H; Aronen HJ Eur J Neurosci; 2004 Apr; 19(7):1939-49. PubMed ID: 15078568 [TBL] [Abstract][Full Text] [Related]
19. High-resolution ERP mapping of cortical activation related to implicit object-location memory. Murphy JS; Wynne CE; O'Rourke EM; Commins S; Roche RA Biol Psychol; 2009 Dec; 82(3):234-45. PubMed ID: 19683556 [TBL] [Abstract][Full Text] [Related]
20. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm. Lamm C; Windischberger C; Moser E; Bauer H Neuroimage; 2007 Jul; 36(4):1374-86. PubMed ID: 17532647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]