These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25376855)

  • 1. Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions.
    Schembri F; Bodiguel H; Colin A
    Soft Matter; 2015 Jan; 11(1):169-78. PubMed ID: 25376855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence photobleaching to evaluate flow velocity and hydrodynamic dispersion in nanoslits.
    Cuenca A; Bodiguel H
    Lab Chip; 2012 May; 12(9):1672-9. PubMed ID: 22422108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evanescent wave-based particle tracking velocimetry for nanochannel flows.
    Kazoe Y; Iseki K; Mawatari K; Kitamori T
    Anal Chem; 2013 Nov; 85(22):10780-6. PubMed ID: 24143898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity oscillations in microfluidic flows of concentrated colloidal suspensions.
    Isa L; Besseling R; Morozov AN; Poon WC
    Phys Rev Lett; 2009 Feb; 102(5):058302. PubMed ID: 19257565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of flow velocity and inference of liquid viscosity in a microfluidic channel by fluorescence photobleaching.
    Carroll NJ; Jensen KH; Parsa S; Holbrook NM; Weitz DA
    Langmuir; 2014 Apr; 30(16):4868-74. PubMed ID: 24730625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results.
    Liu L; Zheng H; Williams L; Zhang F; Wang R; Hertzberg J; Shandas R
    Phys Med Biol; 2008 Mar; 53(5):1397-412. PubMed ID: 18296769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment.
    Buzzaccaro S; Secchi E; Piazza R
    Phys Rev Lett; 2013 Jul; 111(4):048101. PubMed ID: 23931409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct flow visualization of colloidal gels in microfluidic channels.
    Roberts MT; Mohraz A; Christensen KT; Lewis JA
    Langmuir; 2007 Aug; 23(17):8726-31. PubMed ID: 17629305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of shear and walls on the diffusion of colloids in microchannels.
    Ghosh S; Mugele F; Duits MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052305. PubMed ID: 26066175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallax correction for precise near-wall flow investigations using particle imaging.
    Cierpka C; Scharnowski S; Kähler CJ
    Appl Opt; 2013 Apr; 52(12):2923-31. PubMed ID: 23669705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.
    Ha H; Nam KH; Lee SJ
    Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lift forces on colloidal particles in combined electroosmotic and Poiseuille flow.
    Cevheri N; Yoda M
    Langmuir; 2014 Nov; 30(46):13771-80. PubMed ID: 25343853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-equilibrium all-atom molecular dynamics simulations of free and tethered DNA molecules in nanochannel shear flows.
    Wang GM; Sandberg WC
    Nanotechnology; 2007 Apr; 18(13):135702. PubMed ID: 21730387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromixing of miscible liquids in segmented gas-liquid flow.
    Günther A; Jhunjhunwala M; Thalmann M; Schmidt MA; Jensen KF
    Langmuir; 2005 Feb; 21(4):1547-55. PubMed ID: 15697306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of fluorescence correlation spectroscopy for velocity imaging in microfluidic devices.
    Kuricheti KK; Buschmann V; Weston KD
    Appl Spectrosc; 2004 Oct; 58(10):1180-6. PubMed ID: 15527518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow velocity and turbulence in the transverse aorta of a proximally directed aortic cannula: hydrodynamic study in a transparent model.
    Fukuda I; Fujimori S; Daitoku K; Yanaoka H; Inamura T
    Ann Thorac Surg; 2009 Jun; 87(6):1866-71. PubMed ID: 19463611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects.
    Dutta P; Beskok A
    Anal Chem; 2001 May; 73(9):1979-86. PubMed ID: 11354479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.