These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 25377069)
1. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models. Dan M; Bae Y; Pittman TA; Yokel RA Pharm Res; 2015 May; 32(5):1615-25. PubMed ID: 25377069 [TBL] [Abstract][Full Text] [Related]
2. Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles. Dan M; Scott DF; Hardy PA; Wydra RJ; Hilt JZ; Yokel RA; Bae Y Pharm Res; 2013 Feb; 30(2):552-61. PubMed ID: 23080062 [TBL] [Abstract][Full Text] [Related]
3. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier. Sun Z; Worden M; Wroczynskyj Y; Yathindranath V; van Lierop J; Hegmann T; Miller DW Int J Nanomedicine; 2014; 9():3013-26. PubMed ID: 25018630 [TBL] [Abstract][Full Text] [Related]
4. Binding, transcytosis and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-targeted delivery. Dan M; Cochran DB; Yokel RA; Dziubla TD PLoS One; 2013; 8(11):e81051. PubMed ID: 24278373 [TBL] [Abstract][Full Text] [Related]
5. Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125 [TBL] [Abstract][Full Text] [Related]
6. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Norouzi M; Yathindranath V; Thliveris JA; Kopec BM; Siahaan TJ; Miller DW Sci Rep; 2020 Jul; 10(1):11292. PubMed ID: 32647151 [TBL] [Abstract][Full Text] [Related]
8. Iron oxide nanoparticle hyperthermia and chemotherapy cancer treatment. Petryk A; Giustini A; Ryan P; Strawbridge R; Hoopes P Proc SPIE Int Soc Opt Eng; 2009 Feb; 7181():71810N. PubMed ID: 25346581 [TBL] [Abstract][Full Text] [Related]
9. Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model. Ivask A; Pilkington EH; Blin T; Käkinen A; Vija H; Visnapuu M; Quinn JF; Whittaker MR; Qiao R; Davis TP; Ke PC; Voelcker NH Biomater Sci; 2018 Jan; 6(2):314-323. PubMed ID: 29239410 [TBL] [Abstract][Full Text] [Related]
10. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres. Kucharczyk K; Kaczmarek K; Jozefczak A; Slachcinski M; Mackiewicz A; Dams-Kozlowska H Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111654. PubMed ID: 33545822 [TBL] [Abstract][Full Text] [Related]
11. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Ryu C; Lee H; Kim H; Hwang S; Hadadian Y; Mohanty A; Park IK; Cho B; Yoon J; Lee JY Int J Nanomedicine; 2022; 17():31-44. PubMed ID: 35023918 [TBL] [Abstract][Full Text] [Related]
12. Dynamical Magnetic Response of Iron Oxide Nanoparticles Inside Live Cells. Cabrera D; Coene A; Leliaert J; Artés-Ibáñez EJ; Dupré L; Telling ND; Teran FJ ACS Nano; 2018 Mar; 12(3):2741-2752. PubMed ID: 29508990 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Iron Oxide Nanoparticle and Waterbath Hyperthermia Cytotoxicity. Ogden J; Tate J; Strawbridge R; Ivkov R; Hoopes P Proc SPIE Int Soc Opt Eng; 2009 Feb; 7181():71810K. PubMed ID: 25301987 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. T S A; Lu YJ; Chen JP Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876 [TBL] [Abstract][Full Text] [Related]
15. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Sasikala ARK; Unnithan AR; Yun YH; Park CH; Kim CS Acta Biomater; 2016 Feb; 31():122-133. PubMed ID: 26687978 [TBL] [Abstract][Full Text] [Related]
16. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517 [TBL] [Abstract][Full Text] [Related]
17. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier. Hoff D; Sheikh L; Bhattacharya S; Nayar S; Webster TJ Int J Nanomedicine; 2013; 8():703-10. PubMed ID: 23426527 [TBL] [Abstract][Full Text] [Related]
18. Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells. Hoopes P; Tate J; Ogden J; Strawbridge R; Fiering S; Petryk A; Cassim S; Giustini A; Demidenko E; Ivkov R; Barry S; Chinn P; Foreman A Proc SPIE Int Soc Opt Eng; 2009 Feb; 7181():71810P. PubMed ID: 25346583 [TBL] [Abstract][Full Text] [Related]
19. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter. Barbaro D; Di Bari L; Gandin V; Evangelisti C; Vitulli G; Schiavi E; Marzano C; Ferretti AM; Salvadori P PLoS One; 2015; 10(4):e0123159. PubMed ID: 25874906 [TBL] [Abstract][Full Text] [Related]
20. Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Sun Z; Worden M; Thliveris JA; Hombach-Klonisch S; Klonisch T; van Lierop J; Hegmann T; Miller DW Nanomedicine; 2016 Oct; 12(7):1775-1784. PubMed ID: 27125435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]