These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 25377117)

  • 1. Effect of mineralocorticoids on acid-base balance.
    Wagner CA
    Nephron Physiol; 2014; 128(1-2):26-34. PubMed ID: 25377117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulated acid-base transport in the collecting duct.
    Wagner CA; Devuyst O; Bourgeois S; Mohebbi N
    Pflugers Arch; 2009 May; 458(1):137-56. PubMed ID: 19277700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of kidney on potassium balance and its clinical significance].
    Xie QH; Hao CM
    Sheng Li Xue Bao; 2023 Apr; 75(2):216-230. PubMed ID: 37089096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudohypoaldosteronism type II: proximal renal tubular acidosis and dDAVP-sensitive renal hyperkalemia.
    Nahum H; Paillard M; Prigent A; Leviel F; Bichara M; Gardin JP; Idatte JM
    Am J Nephrol; 1986; 6(4):253-62. PubMed ID: 3777034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Familiar hyperkalaemic acidosis.
    Licht JH; Amundson D; Hsueh WA; Lombardo JV
    Q J Med; 1985 Feb; 54(214):161-76. PubMed ID: 3885297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor-Dependent and -Independent Mechanisms over a Wide Range in Serum Potassium.
    Pham TD; Verlander JW; Wang Y; Romero CA; Yue Q; Chen C; Thumova M; Eaton DC; Lazo-Fernandez Y; Wall SM
    J Am Soc Nephrol; 2020 Mar; 31(3):483-499. PubMed ID: 32054691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption.
    Schambelan M; Sebastian A; Rector FC
    Kidney Int; 1981 May; 19(5):716-27. PubMed ID: 7026872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of furosemide on urinary acidification in distal renal tubular acidosis.
    Rastogi SP; Crawford C; Wheeler R; Flanigan W; Arruda JA
    J Lab Clin Med; 1984 Aug; 104(2):271-82. PubMed ID: 6747443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Hyporeninemic hypoaldosteronism and the differential diagnosis of hyperkalemia].
    Weidmann P
    Schweiz Med Wochenschr; 1982 Dec; 112(49):1764-74. PubMed ID: 6758113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperkalemic Forms of Renal Tubular Acidosis: Clinical and Pathophysiological Aspects.
    Batlle D; Arruda J
    Adv Chronic Kidney Dis; 2018 Jul; 25(4):321-333. PubMed ID: 30139459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of pendrin in renal physiology.
    Wall SM; Lazo-Fernandez Y
    Annu Rev Physiol; 2015; 77():363-78. PubMed ID: 25668022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis.
    López-Cayuqueo KI; Chavez-Canales M; Pillot A; Houillier P; Jayat M; Baraka-Vidot J; Trepiccione F; Baudrie V; Büsst C; Soukaseum C; Kumai Y; Jeunemaître X; Hadchouel J; Eladari D; Chambrey R
    Kidney Int; 2018 Sep; 94(3):514-523. PubMed ID: 30146013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients.
    Henger A; Tutt P; Riesen WF; Hulter HN; Krapf R
    J Lab Clin Med; 2000 Nov; 136(5):379-89. PubMed ID: 11079465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.
    Fu Y; Vallon V
    Nephron Physiol; 2014; 128(1-2):8-16. PubMed ID: 25376899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of renal pendrin activity by aldosterone.
    Bourgeois S; Wagner CA
    Curr Opin Nephrol Hypertens; 2021 Jan; 30(1):131-137. PubMed ID: 33186222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy.
    Batlle DC; Arruda JA; Kurtzman NA
    N Engl J Med; 1981 Feb; 304(7):373-80. PubMed ID: 7453754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of impaired distal acidification in hyperkalemic renal tubular acidosis: evaluation with amiloride and bumetanide.
    Schlueter W; Keilani T; Hizon M; Kaplan B; Batlle DC
    J Am Soc Nephrol; 1992 Oct; 3(4):953-64. PubMed ID: 1450372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the pleotropic actions of mineralocorticoids.
    Lang F
    Nephron Physiol; 2014; 128(1-2):1-7. PubMed ID: 25376771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA).
    Sebastian A; McSherry E; Morris RC
    J Clin Invest; 1971 Jan; 50(1):231-43. PubMed ID: 5101297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Renal Physiology of Pendrin-Positive Intercalated Cells.
    Wall SM; Verlander JW; Romero CA
    Physiol Rev; 2020 Jul; 100(3):1119-1147. PubMed ID: 32347156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.