BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25377514)

  • 1. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.
    Alkan N; Friedlander G; Ment D; Prusky D; Fluhr R
    New Phytol; 2015 Jan; 205(2):801-15. PubMed ID: 25377514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato.
    Mahto BK; Singh A; Pareek M; Rajam MV; Dhar-Ray S; Reddy PM
    Plant Mol Biol; 2020 Nov; 104(4-5):381-395. PubMed ID: 32803478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit.
    Alkan N; Fluhr R; Prusky D
    Mol Plant Microbe Interact; 2012 Jan; 25(1):85-96. PubMed ID: 22150075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.
    Barad S; Sela N; Dubey AK; Kumar D; Luria N; Ment D; Cohen S; Schaffer AA; Prusky D
    BMC Genomics; 2017 Aug; 18(1):579. PubMed ID: 28778147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar-regulated susceptibility of tomato fruit to Colletotrichum and Penicillium requires differential mechanisms of pathogenicity and fruit responses.
    Ziv C; Kumar D; Sela N; Itkin M; Malitsky S; Schaffer AA; Prusky DB
    Environ Microbiol; 2020 Jul; 22(7):2870-2891. PubMed ID: 32323444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides.
    Zhou Z; Wu J; Wang M; Zhang J
    Microb Pathog; 2017 Sep; 110():85-92. PubMed ID: 28645773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis.
    Alkan N; Meng X; Friedlander G; Reuveni E; Sukno S; Sherman A; Thon M; Fluhr R; Prusky D
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1345-58. PubMed ID: 23902260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum.
    Guidarelli M; Zoli L; Orlandini A; Bertolini P; Baraldi E
    Mol Plant Pathol; 2014 Oct; 15(8):832-40. PubMed ID: 24690196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize.
    Oliveira-Garcia E; Deising HB
    Plant Cell; 2013 Jun; 25(6):2356-78. PubMed ID: 23898035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of Colletotrichum gloeosporioides.
    Ment D; Alkan N; Luria N; Bi FC; Reuveni E; Fluhr R; Prusky D
    Mol Plant Microbe Interact; 2015 Feb; 28(2):154-66. PubMed ID: 25317668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides.
    Hong K; Gong D; Zhang L; Hu H; Jia Z; Gu H; Song K
    Gene; 2016 Jan; 576(1 Pt 2):275-83. PubMed ID: 26496007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The salicylic acid-induced protection of non-climacteric unripe pepper fruit against Colletotrichum gloeosporioides is similar to the resistance of ripe fruit.
    Lee S; Hong JC; Jeon WB; Chung YS; Sung S; Choi D; Joung YH; Oh BJ
    Plant Cell Rep; 2009 Oct; 28(10):1573-80. PubMed ID: 19701640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction.
    Torres MF; Ghaffari N; Buiate EA; Moore N; Schwartz S; Johnson CD; Vaillancourt LJ
    BMC Genomics; 2016 Mar; 17():202. PubMed ID: 26956617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Colletotrichum gloeosporioides-induced esterase gene of nonclimacteric pepper (Capsicum annuum) fruit during ripening plays a role in resistance against fungal infection.
    Ko MK; Jeon WB; Kim KS; Lee HH; Seo HH; Kim YS; Oh BJ
    Plant Mol Biol; 2005 Jul; 58(4):529-41. PubMed ID: 16021337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeobox Transcription Factors Are Required for Fungal Development and the Suppression of Host Defense Mechanisms in the
    Fu T; Han JH; Shin JH; Song H; Ko J; Lee YH; Kim KT; Kim KS
    mBio; 2021 Aug; 12(4):e0162021. PubMed ID: 34425710
    [No Abstract]   [Full Text] [Related]  

  • 16. Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides.
    Fang H; Liu X; Dong Y; Feng S; Zhou R; Wang C; Ma X; Liu J; Yang KQ
    BMC Plant Biol; 2021 May; 21(1):249. PubMed ID: 34059002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of defense-related genes differentially expressed in the resistance interaction between pepper fruits and the anthracnose fungus Colletotrichum gloeosporioides.
    Oh BJ; Ko MK; Kim KS; Kim YS; Lee HH; Jeon WB; Im KH
    Mol Cells; 2003 Jun; 15(3):349-55. PubMed ID: 12872991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steroidal glycoalkaloids contribute to anthracnose resistance in Solanum lycopersicum.
    Fabian ML; Zhang C; Sun J; Price NP; Chen P; Clarke CR; Jones RW; Stommel JR
    J Exp Bot; 2023 Jun; 74(12):3700-3713. PubMed ID: 36959729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence.
    Prusky D; McEvoy JL; Leverentz B; Conway WS
    Mol Plant Microbe Interact; 2001 Sep; 14(9):1105-13. PubMed ID: 11551075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses.
    O'Connell RJ; Thon MR; Hacquard S; Amyotte SG; Kleemann J; Torres MF; Damm U; Buiate EA; Epstein L; Alkan N; Altmüller J; Alvarado-Balderrama L; Bauser CA; Becker C; Birren BW; Chen Z; Choi J; Crouch JA; Duvick JP; Farman MA; Gan P; Heiman D; Henrissat B; Howard RJ; Kabbage M; Koch C; Kracher B; Kubo Y; Law AD; Lebrun MH; Lee YH; Miyara I; Moore N; Neumann U; Nordström K; Panaccione DG; Panstruga R; Place M; Proctor RH; Prusky D; Rech G; Reinhardt R; Rollins JA; Rounsley S; Schardl CL; Schwartz DC; Shenoy N; Shirasu K; Sikhakolli UR; Stüber K; Sukno SA; Sweigard JA; Takano Y; Takahara H; Trail F; van der Does HC; Voll LM; Will I; Young S; Zeng Q; Zhang J; Zhou S; Dickman MB; Schulze-Lefert P; Ver Loren van Themaat E; Ma LJ; Vaillancourt LJ
    Nat Genet; 2012 Sep; 44(9):1060-5. PubMed ID: 22885923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.