BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25378088)

  • 1. Novel strategies and underlying protective mechanisms of modulation of vagal activity in cardiovascular diseases.
    He X; Zhao M; Bi X; Sun L; Yu X; Zhao M; Zang W
    Br J Pharmacol; 2015 Dec; 172(23):5489-500. PubMed ID: 25378088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases.
    Liu L; Zhao M; Yu X; Zang W
    Neurosci Bull; 2019 Feb; 35(1):156-166. PubMed ID: 30218283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vagal nerve modulation: a promising new therapeutic approach for cardiovascular diseases.
    Zhao M; Sun L; Liu JJ; Wang H; Miao Y; Zang WJ
    Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):701-5. PubMed ID: 22077771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Vagal control of cardiac functions and vagal protection of ischemic myocardium].
    Zang WJ; Sun L; Yu XJ; Lv J; Chen LN; Liu BH
    Sheng Li Xue Bao; 2008 Aug; 60(4):443-52. PubMed ID: 18690385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system.
    He X; Liu J; Zang WJ
    Free Radic Biol Med; 2022 Jan; 178():369-379. PubMed ID: 34906725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of parasympathetic and baroreceptor control of heart rate.
    Ferrari AU
    Cardioscience; 1993 Mar; 4(1):9-13. PubMed ID: 8471742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in vagal reactivity to the sympathicotonia during the progression of heart failure: from self-suppression to counteraction.
    Milicevic G; Udiljak N; Milicevic T
    Med Hypotheses; 2013 Aug; 81(2):264-7. PubMed ID: 23679996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions.
    Grossman P; Taylor EW
    Biol Psychol; 2007 Feb; 74(2):263-85. PubMed ID: 17081672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes.
    Iellamo F; Legramante JM; Pigozzi F; Spataro A; Norbiato G; Lucini D; Pagani M
    Circulation; 2002 Jun; 105(23):2719-24. PubMed ID: 12057984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticotropin-releasing factor receptor-1: a therapeutic target for cardiac autonomic disturbances.
    Wood SK; Woods JH
    Expert Opin Ther Targets; 2007 Nov; 11(11):1401-13. PubMed ID: 18028006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vagal tone: effects on sensitivity, motility, and inflammation.
    Bonaz B; Sinniger V; Pellissier S
    Neurogastroenterol Motil; 2016 Apr; 28(4):455-62. PubMed ID: 27010234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.
    Cauley E; Wang X; Dyavanapalli J; Sun K; Garrott K; Kuzmiak-Glancy S; Kay MW; Mendelowitz D
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(8):H1281-7. PubMed ID: 26371169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of cardiac autonomic tone in conscious rats.
    Sayin H; Chapuis B; Chevalier P; Barrès C; Julien C
    Auton Neurosci; 2016 Jan; 194():26-31. PubMed ID: 26769133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sympathetic afferent stimulation inhibits central vagal activation induced by intravenous medetomidine in rats.
    Kawada T; Akiyama T; Shimizu S; Kamiya A; Uemura K; Turner MJ; Shirai M; Sugimachi M
    Acta Physiol (Oxf); 2013 Sep; 209(1):55-61. PubMed ID: 23710753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide in the regulation of cardiovascular autonomic control.
    Chowdhary S; Townend JN
    Clin Sci (Lond); 1999 Jul; 97(1):5-17. PubMed ID: 10369789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of gender on the cardiac autonomic response to angiotensin II in healthy humans.
    Mann MC; Exner DV; Hemmelgarn BR; Turin TC; Sola DY; Ahmed SB
    J Appl Physiol (1985); 2012 Mar; 112(6):1001-7. PubMed ID: 22223455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.
    He B; Lu Z; He W; Huang B; Jiang H
    Cardiovasc Ther; 2016 Jun; 34(3):167-71. PubMed ID: 26914959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic beta-blockers on human cardiac vagal control.
    Vaile JC; Fletcher J; Al-Ani M; Ross HF; Littler WA; Coote JH; Townend JN
    Clin Sci (Lond); 1999 Nov; 97(5):585-93; discussion 609-10. PubMed ID: 10545309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury.
    Intachai K; C Chattipakorn S; Chattipakorn N; Shinlapawittayatorn K
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The autonomic nervous system and cardiovascular disease: role of n-3 PUFAs.
    La Rovere MT; Christensen JH
    Vascul Pharmacol; 2015 Aug; 71():1-10. PubMed ID: 25869497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.