BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25378088)

  • 41. Sympathetic and parasympathetic innervation in cancer: therapeutic implications.
    Kamiya A; Hiyama T; Fujimura A; Yoshikawa S
    Clin Auton Res; 2021 Apr; 31(2):165-178. PubMed ID: 32926324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity.
    Frøkjaer JB; Bergmann S; Brock C; Madzak A; Farmer AD; Ellrich J; Drewes AM
    Neurogastroenterol Motil; 2016 Apr; 28(4):592-8. PubMed ID: 26728182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antiarrhythmic drugs and the modulation of autonomic control of heart rate in rabbits.
    Murthy VS; Hwang TF
    Fed Proc; 1986 Jul; 45(8):2186-90. PubMed ID: 3013694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports.
    Khuanjing T; Palee S; Chattipakorn SC; Chattipakorn N
    Acta Physiol (Oxf); 2020 Feb; 228(2):e13396. PubMed ID: 31595611
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure in the spontaneously hypertensive rat.
    Moreira TS; Antunes VR; Falquetto B; Marina N
    J Hypertens; 2018 Dec; 36(12):2444-2452. PubMed ID: 30045362
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exercise and autonomic function in health and cardiovascular disease.
    Rosenwinkel ET; Bloomfield DM; Arwady MA; Goldsmith RL
    Cardiol Clin; 2001 Aug; 19(3):369-87. PubMed ID: 11570111
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estrogen blocks the cardiovascular and autonomic changes following vagal stimulation in ovariectomized rats.
    Saleh TM; Saleh MC; Connell BJ
    Auton Neurosci; 2001 Apr; 88(1-2):25-35. PubMed ID: 11474543
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacologic modulation of parasympathetic activity in heart failure.
    Desai MY; Watanabe MA; Laddu AA; Hauptman PJ
    Heart Fail Rev; 2011 Mar; 16(2):179-93. PubMed ID: 20924667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opposite effects of iv amiodarone on cardiovascular vagal and sympathetic efferent activities in rats.
    Dias Da Silva VJ; Gnecchi-Ruscone T; Lavelli B; Bellina V; Manzella D; Porta A; Malliani A; Montano N
    Am J Physiol Regul Integr Comp Physiol; 2002 Aug; 283(2):R543-8. PubMed ID: 12121869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tonically Active cAMP-Dependent Signaling in the Ventrolateral Medulla Regulates Sympathetic and Cardiac Vagal Outflows.
    Tallapragada VJ; Hildreth CM; Burke PG; Raley DA; Hassan SF; McMullan S; Goodchild AK
    J Pharmacol Exp Ther; 2016 Feb; 356(2):424-33. PubMed ID: 26578265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of low-level vagus nerve stimulation in cardiac therapy.
    Wang Y; Po SS; Scherlag BJ; Yu L; Jiang H
    Expert Rev Med Devices; 2019 Aug; 16(8):675-682. PubMed ID: 31306049
    [No Abstract]   [Full Text] [Related]  

  • 52. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps.
    van Weperen VYH; Vaseghi M
    Front Neurosci; 2023; 17():1192188. PubMed ID: 37351426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Medetomidine suppresses cardiac and gastric sympathetic nerve activities but selectively activates cardiac vagus nerve.
    Shimizu S; Akiyama T; Kawada T; Kamiya A; Turner MJ; Yamamoto H; Shishido T; Shirai M; Sugimachi M
    Circ J; 2014; 78(6):1405-13. PubMed ID: 24727611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of vagal function in the risk for cardiovascular disease and mortality.
    Thayer JF; Lane RD
    Biol Psychol; 2007 Feb; 74(2):224-42. PubMed ID: 17182165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability.
    Herring N; Cranley J; Lokale MN; Li D; Shanks J; Alston EN; Girard BM; Carter E; Parsons RL; Habecker BA; Paterson DJ
    J Mol Cell Cardiol; 2012 Mar; 52(3):667-76. PubMed ID: 22172449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation.
    Bonaz B; Sinniger V; Pellissier S
    J Physiol; 2016 Oct; 594(20):5781-5790. PubMed ID: 27059884
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Progress in the study of vagal control of cardiac ventricles.
    Zang WJ; Chen LN; Yu XJ
    Sheng Li Xue Bao; 2005 Dec; 57(6):659-72. PubMed ID: 16344889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A theoretical appraisal of the dependence of respiratory sinus arrhythmia on gradual vagal blockade.
    Pyetan E; Akselrod S
    Methods Inf Med; 2004; 43(1):52-5. PubMed ID: 15026837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Philbin KE; Bateman RJ; Mendelowitz D
    Brain Res; 2010 Aug; 1347():65-70. PubMed ID: 20553874
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tertiapin-Q removes a large and rapidly acting component of vagal slowing of the guinea-pig cardiac pacemaker.
    Bolter CP; Turner MJ
    Auton Neurosci; 2009 Oct; 150(1-2):76-81. PubMed ID: 19481505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.