These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 25378233)
1. A two-enzyme immobilization approach using carbon nanotubes/silica as support. Du K; Sun J; Zhou X; Feng W; Jiang X; Ji P Biotechnol Prog; 2015; 31(1):42-7. PubMed ID: 25378233 [TBL] [Abstract][Full Text] [Related]
2. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch. Jadhav SB; Singhal RS Carbohydr Polym; 2013 Oct; 98(1):1191-7. PubMed ID: 23987463 [TBL] [Abstract][Full Text] [Related]
3. Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer. Zhao G; Li Y; Wang J; Zhu H Appl Microbiol Biotechnol; 2011 Aug; 91(3):591-601. PubMed ID: 21538110 [TBL] [Abstract][Full Text] [Related]
4. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization. Eldin MS; Seuror EI; Nasr MA; Tieama HA Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806 [TBL] [Abstract][Full Text] [Related]
5. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. Yang K; Xu NS; Su WW J Biotechnol; 2010 Jul; 148(2-3):119-27. PubMed ID: 20580753 [TBL] [Abstract][Full Text] [Related]
6. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Cang-Rong JT; Pastorin G Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802 [TBL] [Abstract][Full Text] [Related]
7. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Salgaonkar M; Nadar SS; Rathod VK Int J Biol Macromol; 2018 Jul; 113():464-475. PubMed ID: 29458106 [TBL] [Abstract][Full Text] [Related]
8. Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Goh WJ; Makam VS; Hu J; Kang L; Zheng M; Yoong SL; Udalagama CN; Pastorin G Langmuir; 2012 Dec; 28(49):16864-73. PubMed ID: 23148719 [TBL] [Abstract][Full Text] [Related]
9. Coimmobilization of glucoamylase and glucose isomerase by molecular deposition technique for one-step conversion of dextrin to fructose. Ge Y; Wang Y; Zhou H; Wang S; Tong Y; Li W J Biotechnol; 1999 Jan; 67(1):33-40. PubMed ID: 9987846 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Gupta K; Jana AK; Kumar S; Maiti M Bioprocess Biosyst Eng; 2013 Nov; 36(11):1715-24. PubMed ID: 23572179 [TBL] [Abstract][Full Text] [Related]
11. Enzyme immobilization in a biomimetic silica support. Luckarift HR; Spain JC; Naik RR; Stone MO Nat Biotechnol; 2004 Feb; 22(2):211-3. PubMed ID: 14716316 [TBL] [Abstract][Full Text] [Related]
12. Carboxymethyl cellulose-gelatin-silica nanohybrid: an efficient carrier matrix for alpha amylase. Singh V; Ahmad S Int J Biol Macromol; 2014 Jun; 67():439-45. PubMed ID: 24709014 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis. Neupane S; Patnode K; Li H; Baryeh K; Liu G; Hu J; Chen B; Pan Y; Yang Z ACS Appl Mater Interfaces; 2019 Mar; 11(12):12133-12141. PubMed ID: 30839195 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking. Bayramoglu G; Altintas B; Arica MY Appl Microbiol Biotechnol; 2013 Feb; 97(3):1149-59. PubMed ID: 22419218 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and biosensing with CNT/aligned mesostructured silica core-shell nanowires. Zhang L; Geng WC; Qiao SZ; Zheng HJ; Lu GQ; Yan ZF ACS Appl Mater Interfaces; 2010 Oct; 2(10):2767-72. PubMed ID: 20873810 [TBL] [Abstract][Full Text] [Related]
16. Co-immobilization of amylases in porous crosslinked gelatin matrices by different reticulations approaches. Frota EG; Sartor KB; Biduski B; Margarites ACF; Colla LM; Piccin JS Int J Biol Macromol; 2020 Dec; 165(Pt A):1002-1009. PubMed ID: 33011269 [TBL] [Abstract][Full Text] [Related]
17. A carbon nanotube/silica sol-gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Wang J; Gu M; Di J; Gao Y; Wu Y; Tu Y Bioprocess Biosyst Eng; 2007 Jul; 30(4):289-96. PubMed ID: 17450458 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity. Veesar IA; Solangi IB; Memon S Bioorg Chem; 2015 Jun; 60():58-63. PubMed ID: 25965976 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of glucoamylase on triazine-functionalized Fe Amirbandeh M; Taheri-Kafrani A Int J Biol Macromol; 2016 Dec; 93(Pt A):1183-1191. PubMed ID: 27693337 [TBL] [Abstract][Full Text] [Related]
20. Some properties of free and immobilized alpha-amylase from Penicillium griseofulvum by solid state fermentation. Ertan F; Yagar H; Balkan B Prep Biochem Biotechnol; 2006; 36(1):81-91. PubMed ID: 16428140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]