BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25378275)

  • 1. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle.
    Santín C; Doerr SH; Preston CM; González-Rodríguez G
    Glob Chang Biol; 2015 Apr; 21(4):1621-33. PubMed ID: 25378275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Letter to the Editor on 'Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle'.
    Billings SA; Schlesinger WH
    Glob Chang Biol; 2015 Aug; 21(8):2831. PubMed ID: 25510226
    [No Abstract]   [Full Text] [Related]  

  • 3. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting.
    Howell A; Bretfeld M; Belmont E
    Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-scale controls on carbon emissions from boreal forest megafires.
    Walker XJ; Rogers BM; Baltzer JL; Cumming SG; Day NJ; Goetz SJ; Johnstone JF; Schuur EAG; Turetsky MR; Mack MC
    Glob Chang Biol; 2018 Sep; 24(9):4251-4265. PubMed ID: 29697169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of black carbon and black nitrogen in physical soil fractions from soils seven years after an intense forest fire and their role as C sink.
    López-Martín M; González-Vila FJ; Knicker H
    Sci Total Environ; 2018 Oct; 637-638():1187-1196. PubMed ID: 29801212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing wildfires threaten historic carbon sink of boreal forest soils.
    Walker XJ; Baltzer JL; Cumming SG; Day NJ; Ebert C; Goetz S; Johnstone JF; Potter S; Rogers BM; Schuur EAG; Turetsky MR; Mack MC
    Nature; 2019 Aug; 572(7770):520-523. PubMed ID: 31435055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world.
    Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR
    Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a global assessment of pyrogenic carbon from vegetation fires.
    Santín C; Doerr SH; Kane ES; Masiello CA; Ohlson M; de la Rosa JM; Preston CM; Dittmar T
    Glob Chang Biol; 2016 Jan; 22(1):76-91. PubMed ID: 26010729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community shifts reflect losses of native soil carbon with pyrogenic and fresh organic matter additions and are greatest in low-carbon soils.
    Whitman T; DeCiucies S; Hanley K; Enders A; Woolet J; Lehmann J
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33514520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Into the unknown: The role of post-fire soil erosion in the carbon cycle.
    Girona-García A; Vieira D; Doerr S; Panagos P; Santín C
    Glob Chang Biol; 2024 Jun; 30(6):e17354. PubMed ID: 38822629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment.
    Singh N; Abiven S; Maestrini B; Bird JA; Torn MS; Schmidt MW
    Glob Chang Biol; 2014 May; 20(5):1629-42. PubMed ID: 25544969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of forest fire on the properties of soil and humic substances extracted from forest soil in Gunma, Japan.
    Sazawa K; Yoshida H; Okusu K; Hata N; Kuramitz H
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30325-30338. PubMed ID: 30159838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.
    Turcios MM; Jaramillo MM; do Vale JF; Fearnside PM; Barbosa RI
    Glob Chang Biol; 2016 Jan; 22(1):190-7. PubMed ID: 26207816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems.
    Mitchell SR; Harmon ME; O'Connell KE
    Ecol Appl; 2009 Apr; 19(3):643-55. PubMed ID: 19425428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing fire impacts on the carbon stability of fire-tolerant forests.
    Bennett LT; Bruce MJ; Machunter J; Kohout M; Krishnaraj SJ; Aponte C
    Ecol Appl; 2017 Dec; 27(8):2497-2513. PubMed ID: 28921765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree mortality and carbon emission as a function of wildfire severity in south-eastern Australian temperate forests.
    Volkova L; Paul KI; Roxburgh SH; Weston CJ
    Sci Total Environ; 2022 Dec; 853():158705. PubMed ID: 36099944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-fire forest floor succession in a Central European temperate forest depends on organic matter input from recovering vegetation rather than on pyrogenic carbon input from fire.
    Jílková V; Adámek M; Angst G; Tůmová M; Devetter M
    Sci Total Environ; 2023 Feb; 861():160659. PubMed ID: 36473654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century.
    Lin S; Liu Y; Huang X
    Sci Total Environ; 2021 Nov; 796():148924. PubMed ID: 34265612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.