These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25378293)

  • 21. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.
    Youngerman ED; Flammang BE; Lauder GV
    Zoology (Jena); 2014 Oct; 117(5):337-48. PubMed ID: 25043841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating sustainable bycatch rates for California sea lion populations in the Gulf of California.
    Underwood JG; Hernandez Camacho CJ; Aurioles-Gamboa D; Gerber LR
    Conserv Biol; 2008 Jun; 22(3):701-10. PubMed ID: 18410402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A formulation for calculating the translational velocity of a vortex ring or pair.
    Mohseni K
    Bioinspir Biomim; 2006 Dec; 1(4):S57-64. PubMed ID: 17671319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renewable fluid dynamic energy derived from aquatic animal locomotion.
    Dabiri JO
    Bioinspir Biomim; 2007 Sep; 2(3):L1-3. PubMed ID: 17848785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-time invention and hydrodynamic convergences through amniote flipper evolution.
    Krahl A; Werneburg I
    Anat Rec (Hoboken); 2023 Jun; 306(6):1323-1355. PubMed ID: 36458511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Passive cambering and flexible propulsors: cetacean flukes.
    Fish FE; Nusbaum MK; Beneski JT; Ketten DR
    Bioinspir Biomim; 2006 Dec; 1(4):S42-8. PubMed ID: 17671317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Function of dorsal fins in bamboo shark during steady swimming.
    Maia A; Wilga CA
    Zoology (Jena); 2013 Aug; 116(4):224-31. PubMed ID: 23830781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering.
    Standen EM; Lauder GV
    J Exp Biol; 2005 Jul; 208(Pt 14):2753-63. PubMed ID: 16000544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of water temperature on the energetic costs of juvenile and adult California sea lions (Zalophus californianus): the importance of skeletal muscle thermogenesis for thermal balance.
    Liwanag HE; Williams TM; Costa DP; Kanatous SB; Davis RW; Boyd IL
    J Exp Biol; 2009 Dec; 212(Pt 24):3977-84. PubMed ID: 19946075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery.
    Wiens AJ; Nahon M
    Bioinspir Biomim; 2012 Dec; 7(4):046016. PubMed ID: 23135166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Movement and function of the pectoral fins of the larval zebrafish (Danio rerio) during slow swimming.
    Green MH; Ho RK; Hale ME
    J Exp Biol; 2011 Sep; 214(Pt 18):3111-23. PubMed ID: 21865524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aquatic turning performance of painted turtles (Chrysemys picta) and functional consequences of a rigid body design.
    Rivera G; Rivera AR; Dougherty EE; Blob RW
    J Exp Biol; 2006 Nov; 209(Pt 21):4203-13. PubMed ID: 17050835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2014 Sep; 9(3):036011. PubMed ID: 24737004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscous pumping inspired by flexible propulsion.
    Arco RM; Vélez-Cordero JR; Lauga E; Zenit R
    Bioinspir Biomim; 2014 Sep; 9(3):036007. PubMed ID: 24667497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.