These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25378307)

  • 1. DEEP: a general computational framework for predicting enhancers.
    Kleftogiannis D; Kalnis P; Bajic VB
    Nucleic Acids Res; 2015 Jan; 43(1):e6. PubMed ID: 25378307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers.
    Kleftogiannis D; Ashoor H; Bajic VB
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):332-341. PubMed ID: 30578915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DENdb: database of integrated human enhancers.
    Ashoor H; Kleftogiannis D; Radovanovic A; Bajic VB
    Database (Oxford); 2015; 2015():. PubMed ID: 26342387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information.
    Wu H; Liu M; Zhang P; Zhang H
    Brief Funct Genomics; 2023 May; 22(3):302-311. PubMed ID: 36715222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress and challenges in bioinformatics approaches for enhancer identification.
    Kleftogiannis D; Kalnis P; Bajic VB
    Brief Bioinform; 2016 Nov; 17(6):967-979. PubMed ID: 26634919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.
    Lu Y; Qu W; Shan G; Zhang C
    PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEDLA: predicting enhancers with a deep learning-based algorithmic framework.
    Liu F; Li H; Ren C; Bo X; Shu W
    Sci Rep; 2016 Jun; 6():28517. PubMed ID: 27329130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting enhancers in mammalian genomes using supervised hidden Markov models.
    Zehnder T; Benner P; Vingron M
    BMC Bioinformatics; 2019 Mar; 20(1):157. PubMed ID: 30917778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating diverse datasets improves developmental enhancer prediction.
    Erwin GD; Oksenberg N; Truty RM; Kostka D; Murphy KK; Ahituv N; Pollard KS; Capra JA
    PLoS Comput Biol; 2014 Jun; 10(6):e1003677. PubMed ID: 24967590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancer target prediction: state-of-the-art approaches and future prospects.
    Umarov R; Hon CC
    Biochem Soc Trans; 2023 Oct; 51(5):1975-1988. PubMed ID: 37830459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taking promoters out of enhancers in sequence based predictions of tissue-specific mammalian enhancers.
    Herman-Izycka J; Wlasnowolski M; Wilczynski B
    BMC Med Genomics; 2017 May; 10(Suppl 1):34. PubMed ID: 28589862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.
    Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV
    BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting enhancers with deep convolutional neural networks.
    Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
    Yang B; Liu F; Ren C; Ouyang Z; Xie Z; Bo X; Shu W
    Bioinformatics; 2017 Jul; 33(13):1930-1936. PubMed ID: 28334114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers.
    Zhang Y; Zhang P; Wu H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38485768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines.
    Xu J; Hu H; Dai Y
    PLoS One; 2016; 11(9):e0163491. PubMed ID: 27662487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.