BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25378309)

  • 41. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data.
    Ding J; Hu H; Li X
    Nucleic Acids Res; 2014 Mar; 42(5):e35. PubMed ID: 24322294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq).
    Zhu JY; Sun Y; Wang ZY
    Methods Mol Biol; 2012; 876():173-88. PubMed ID: 22576095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. annoPeak: a web application to annotate and visualize peaks from ChIP-seq/ChIP-exo-seq.
    Tang X; Srivastava A; Liu H; Machiraju R; Huang K; Leone G
    Bioinformatics; 2017 May; 33(10):1570-1571. PubMed ID: 28169395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Resolution Chromatin Immunoprecipitation: ChIP-Sequencing.
    Diaz RE; Sanchez A; Anton Le Berre V; Bouet JY
    Methods Mol Biol; 2017; 1624():61-73. PubMed ID: 28842876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HOT or not: examining the basis of high-occupancy target regions.
    Wreczycka K; Franke V; Uyar B; Wurmus R; Bulut S; Tursun B; Akalin A
    Nucleic Acids Res; 2019 Jun; 47(11):5735-5745. PubMed ID: 31114922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
    Nakato R; Shirahige K
    Bioinformatics; 2018 Jul; 34(14):2356-2363. PubMed ID: 29528371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inferring direct DNA binding from ChIP-seq.
    Bailey TL; Machanick P
    Nucleic Acids Res; 2012 Sep; 40(17):e128. PubMed ID: 22610855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments.
    Laajala TD; Raghav S; Tuomela S; Lahesmaa R; Aittokallio T; Elo LL
    BMC Genomics; 2009 Dec; 10():618. PubMed ID: 20017957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.
    Pillai S; Chellappan SP
    Methods Mol Biol; 2015; 1288():447-72. PubMed ID: 25827896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Collaborative Completion of Transcription Factor Binding Profiles via Local Sensitive Unified Embedding.
    Zhu L; Guo WL; Lu C; Huang DS
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):946-958. PubMed ID: 27845669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
    Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators.
    Piechota M; Korostynski M; Ficek J; Tomski A; Przewlocki R
    BMC Bioinformatics; 2016 Feb; 17():85. PubMed ID: 26868127
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inferring transcription factor complexes from ChIP-seq data.
    Whitington T; Frith MC; Johnson J; Bailey TL
    Nucleic Acids Res; 2011 Aug; 39(15):e98. PubMed ID: 21602262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.