These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25378335)

  • 1. MeT-DB: a database of transcriptome methylation in mammalian cells.
    Liu H; Flores MA; Meng J; Zhang L; Zhao X; Rao MK; Chen Y; Huang Y
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D197-203. PubMed ID: 25378335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome.
    Liu H; Wang H; Wei Z; Zhang S; Hua G; Zhang SW; Zhang L; Gao SJ; Meng J; Chen X; Huang Y
    Nucleic Acids Res; 2018 Jan; 46(D1):D281-D287. PubMed ID: 29126312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MeT-DB V2.0: Elucidating Context-Specific Functions of N6-Methyl-Adenosine Methyltranscriptome.
    Liu H; Ma J; Meng J; Zhang L
    Methods Mol Biol; 2021; 2284():507-518. PubMed ID: 33835460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data.
    Cui X; Zhang L; Meng J; Rao MK; Chen Y; Huang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):526-534. PubMed ID: 29610101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package.
    Meng J; Lu Z; Liu H; Zhang L; Zhang S; Chen Y; Rao MK; Huang Y
    Methods; 2014 Oct; 69(3):274-81. PubMed ID: 24979058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):520. PubMed ID: 27556597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Chen Y; Huang Y
    Bioinformatics; 2016 Jun; 32(12):i378-i385. PubMed ID: 27307641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Location Analyses of N6-Methyladenosine Modifications (m
    Molinie B; Giallourakis CC
    Methods Mol Biol; 2017; 1562():45-53. PubMed ID: 28349453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REPIC: a database for exploring the N
    Liu S; Zhu A; He C; Chen M
    Genome Biol; 2020 Apr; 21(1):100. PubMed ID: 32345346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HEPeak: an HMM-based exome peak-finding package for RNA epigenome sequencing data.
    Cui X; Meng J; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2015; 16 Suppl 4(Suppl 4):S2. PubMed ID: 25917296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome-wide N
    Tao X; Chen J; Jiang Y; Wei Y; Chen Y; Xu H; Zhu L; Tang G; Li M; Jiang A; Shuai S; Bai L; Liu H; Ma J; Jin L; Wen A; Wang Q; Zhu G; Xie M; Wu J; He T; Huang C; Gao X; Li X
    BMC Genomics; 2017 Apr; 18(1):336. PubMed ID: 28454518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain.
    Amort T; Rieder D; Wille A; Khokhlova-Cubberley D; Riml C; Trixl L; Jia XY; Micura R; Lusser A
    Genome Biol; 2017 Jan; 18(1):1. PubMed ID: 28077169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins.
    Das Mandal S; Ray PS
    Genomics; 2021 Jan; 113(1 Pt 1):205-216. PubMed ID: 33340693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing.
    Dominissini D; Moshitch-Moshkovitz S; Salmon-Divon M; Amariglio N; Rechavi G
    Nat Protoc; 2013 Jan; 8(1):176-89. PubMed ID: 23288318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the Atlas of RNA Modifications from Epitranscriptome Sequencing Data.
    Zhang XQ; Yang JH
    Methods Mol Biol; 2019; 1870():107-124. PubMed ID: 30539550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scDART-seq reveals distinct m
    Tegowski M; Flamand MN; Meyer KD
    Mol Cell; 2022 Feb; 82(4):868-878.e10. PubMed ID: 35081365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide N6-methyladenosine methylation landscape of coronary artery disease.
    Deng K; Ning X; Ren X; Yang B; Li J; Cao J; Chen J; Lu X; Chen S; Wang L
    Epigenomics; 2021 May; 13(10):793-808. PubMed ID: 33876670
    [No Abstract]   [Full Text] [Related]  

  • 19. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data.
    Sun WJ; Li JH; Liu S; Wu J; Zhou H; Qu LH; Yang JH
    Nucleic Acids Res; 2016 Jan; 44(D1):D259-65. PubMed ID: 26464443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons.
    Meyer KD; Saletore Y; Zumbo P; Elemento O; Mason CE; Jaffrey SR
    Cell; 2012 Jun; 149(7):1635-46. PubMed ID: 22608085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.