BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25378407)

  • 1. Phosphorylation of rat melanopsin at Ser-381 and Ser-398 by light/dark and its importance for intrinsically photosensitive ganglion cells (ipRGCs) cellular Ca2+ signaling.
    Fahrenkrug J; Falktoft B; Georg B; Hannibal J; Kristiansen SB; Klausen TK
    J Biol Chem; 2014 Dec; 289(51):35482-93. PubMed ID: 25378407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of mouse melanopsin by protein kinase A.
    Blasic JR; Brown RL; Robinson PR
    PLoS One; 2012; 7(9):e45387. PubMed ID: 23049792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Phosphatase 2A and Clathrin-Mediated Endocytosis Facilitate Robust Melanopsin Light Responses and Resensitization.
    Valdez-Lopez JC; Gebreegziabher M; Bailey RJ; Flores J; Awotunde O; Burnett T; Robinson PR
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):10. PubMed ID: 33049058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors.
    Bramley JR; Wiles EM; Sollars PJ; Pickard GE
    PLoS One; 2011; 6(7):e22721. PubMed ID: 21829491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Arrestin-dependent deactivation of mouse melanopsin.
    Cameron EG; Robinson PR
    PLoS One; 2014; 9(11):e113138. PubMed ID: 25401926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanopsin Carboxy-terminus phosphorylation plasticity and bulk negative charge, not strict site specificity, achieves phototransduction deactivation.
    Valdez-Lopez JC; Gulati S; Ortiz EA; Palczewski K; Robinson PR
    PLoS One; 2020; 15(4):e0228121. PubMed ID: 32236094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanopsin--shedding light on the elusive circadian photopigment.
    Brown RL; Robinson PR
    Chronobiol Int; 2004 Mar; 21(2):189-204. PubMed ID: 15332341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photic Regulation of Circadian Rhythms and Voluntary Ethanol Intake: Role of Melanopsin-expressing Intrinsically Photosensitive Retinal Ganglion Cells.
    Hartmann MC; McCulley WD; Johnson ST; Salisbury CS; Vaidya N; Smith CG; Hattar S; Rosenwasser AM
    J Biol Rhythms; 2021 Apr; 36(2):146-159. PubMed ID: 33357136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development.
    Schmidt TM; Taniguchi K; Kofuji P
    J Neurophysiol; 2008 Jul; 100(1):371-84. PubMed ID: 18480363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of melanopsin mRNA and protein in Brown Norwegian rats.
    Hannibal J; Georg B; Fahrenkrug J
    Exp Eye Res; 2013 Jan; 106():55-63. PubMed ID: 23187103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G-Protein Coupled Receptor Kinase 2 Minimally Regulates Melanopsin Activity in Intrinsically Photosensitive Retinal Ganglion Cells.
    Sexton TJ; Van Gelder RN
    PLoS One; 2015; 10(6):e0128690. PubMed ID: 26069965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells.
    Mure LS; Hatori M; Zhu Q; Demas J; Kim IM; Nayak SK; Panda S
    Neuron; 2016 Jun; 90(5):1016-27. PubMed ID: 27181062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment.
    Mure LS; Hatori M; Ruda K; Benegiamo G; Demas J; Panda S
    Cell Rep; 2018 Nov; 25(9):2497-2509.e4. PubMed ID: 30485815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells.
    Østergaard J; Hannibal J; Fahrenkrug J
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3812-20. PubMed ID: 17652756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent phosphorylation of the carboxy tail of mouse melanopsin.
    Blasic JR; Lane Brown R; Robinson PR
    Cell Mol Life Sci; 2012 May; 69(9):1551-62. PubMed ID: 22159583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
    Fu Y; Zhong H; Wang MH; Luo DG; Liao HW; Maeda H; Hattar S; Frishman LJ; Yau KW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10339-44. PubMed ID: 16014418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells.
    Hartwick AT; Bramley JR; Yu J; Stevens KT; Allen CN; Baldridge WH; Sollars PJ; Pickard GE
    J Neurosci; 2007 Dec; 27(49):13468-80. PubMed ID: 18057205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the number of melanopsin-containing retinal ganglion cells by early light exposure.
    Hong J; Zeng Q; Wang H; Kuo DS; Baldridge WH; Wang N
    Exp Eye Res; 2013 Jun; 111():17-26. PubMed ID: 23541830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
    Prigge CL; Yeh PT; Liou NF; Lee CC; You SF; Liu LL; McNeill DS; Chew KS; Hattar S; Chen SK; Zhang DQ
    J Neurosci; 2016 Jul; 36(27):7184-97. PubMed ID: 27383593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.