These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25378407)

  • 21. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction.
    Valdez-Lopez JC; Petr ST; Donohue MP; Bailey RJ; Gebreeziabher M; Cameron EG; Wolf JB; Szalai VA; Robinson PR
    Biophys J; 2020 Jul; 119(2):389-401. PubMed ID: 32621866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
    Altimus CM; Güler AD; Villa KL; McNeill DS; Legates TA; Hattar S
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19998-20003. PubMed ID: 19060203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photochemistry of retinal chromophore in mouse melanopsin.
    Walker MT; Brown RL; Cronin TW; Robinson PR
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8861-5. PubMed ID: 18579788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melanopsin triggers the release of internal calcium stores in response to light.
    Kumbalasiri T; Rollag MD; Isoldi MC; Castrucci AM; Provencio I
    Photochem Photobiol; 2007; 83(2):273-9. PubMed ID: 16961436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light and darkness regulate melanopsin in the retinal ganglion cells of the albino Wistar rat.
    Hannibal J; Georg B; Hindersson P; Fahrenkrug J
    J Mol Neurosci; 2005; 27(2):147-55. PubMed ID: 16186625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melanopsin changes in neonatal albino rat independent of rods and cones.
    Hannibal J; Georg B; Fahrenkrug J
    Neuroreport; 2007 Jan; 18(1):81-5. PubMed ID: 17259866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue.
    Rodgers J; Hughes S; Pothecary CA; Brown LA; Hickey DG; Peirson SN; Hankins MW
    Hum Mol Genet; 2018 Aug; 27(15):2589-2603. PubMed ID: 29718372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The emerging roles of melanopsin in behavioral adaptation to light.
    Hatori M; Panda S
    Trends Mol Med; 2010 Oct; 16(10):435-46. PubMed ID: 20810319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior.
    Do MTH
    Neuron; 2019 Oct; 104(2):205-226. PubMed ID: 31647894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of light on the sleep-wakefulness cycle of mice mediated by intrinsically photosensitive retinal ganglion cells.
    Wang Y; Yang W; Zhang P; Ding Z; Wang L; Cheng J
    Biochem Biophys Res Commun; 2022 Feb; 592():93-98. PubMed ID: 35033872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans.
    Cao D; Nicandro N; Barrionuevo PA
    J Vis; 2015 Jan; 15(1):15.1.27. PubMed ID: 25624466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of photosensitivity by heterologous expression of melanopsin.
    Qiu X; Kumbalasiri T; Carlson SM; Wong KY; Krishna V; Provencio I; Berson DM
    Nature; 2005 Feb; 433(7027):745-9. PubMed ID: 15674243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanopsin phototransduction: slowly emerging from the dark.
    Hughes S; Hankins MW; Foster RG; Peirson SN
    Prog Brain Res; 2012; 199():19-40. PubMed ID: 22877657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic inputs to retinal ganglion cells that set the circadian clock.
    Perez-Leon JA; Warren EJ; Allen CN; Robinson DW; Brown RL
    Eur J Neurosci; 2006 Aug; 24(4):1117-23. PubMed ID: 16930437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells.
    Sakamoto K; Liu C; Kasamatsu M; Pozdeyev NV; Iuvone PM; Tosini G
    Eur J Neurosci; 2005 Dec; 22(12):3129-36. PubMed ID: 16367779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.
    Dacey DM; Liao HW; Peterson BB; Robinson FR; Smith VC; Pokorny J; Yau KW; Gamlin PD
    Nature; 2005 Feb; 433(7027):749-54. PubMed ID: 15716953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Dorsal Raphe Nucleus Receives Afferents From Alpha-Like Retinal Ganglion Cells and Intrinsically Photosensitive Retinal Ganglion Cells in the Rat.
    Li X; Ren C; Huang L; Lin B; Pu M; Pickard GE; So KF
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8373-81. PubMed ID: 26747768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina.
    García-Ayuso D; Galindo-Romero C; Di Pierdomenico J; Vidal-Sanz M; Agudo-Barriuso M; Villegas Pérez MP
    Exp Eye Res; 2017 Aug; 161():10-16. PubMed ID: 28552384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades.
    Bailes HJ; Lucas RJ
    Proc Biol Sci; 2013 May; 280(1759):20122987. PubMed ID: 23554393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats.
    Lax P; Esquiva G; Fuentes-Broto L; Segura F; Sánchez-Cano A; Cuenca N; Pinilla I
    Chronobiol Int; 2016; 33(4):374-91. PubMed ID: 27003747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.