BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25378584)

  • 21. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level.
    Bartee MY; Lutsenko S
    Biometals; 2007 Jun; 20(3-4):627-37. PubMed ID: 17268820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme.
    Bonnemaison ML; Bäck N; Duffy ME; Ralle M; Mains RE; Eipper BA
    J Biol Chem; 2015 Aug; 290(35):21264-79. PubMed ID: 26170456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of metal binding and phosphorylation domains in the regulation of cisplatin-induced trafficking of ATP7B.
    Safaei R; Adams PL; Mathews RA; Manorek G; Howell SB
    Metallomics; 2013 Aug; 5(8):964-72. PubMed ID: 23803742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical basis of regulation of human copper-transporting ATPases.
    Lutsenko S; LeShane ES; Shinde U
    Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Menkes disease ATPase (ATP7A) is internalized via a Rac1-regulated, clathrin- and caveolae-independent pathway.
    Cobbold C; Coventry J; Ponnambalam S; Monaco AP
    Hum Mol Genet; 2003 Jul; 12(13):1523-33. PubMed ID: 12812980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system.
    Hsi G; Cullen LM; Macintyre G; Chen MM; Glerum DM; Cox DW
    Hum Mutat; 2008 Apr; 29(4):491-501. PubMed ID: 18203200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wilson disease protein ATP7B is localized in the late endosomes in a polarized human hepatocyte cell line.
    Harada M; Kumemura H; Sakisaka S; Shishido S; Taniguchi E; Kawaguchi T; Hanada S; Koga H; Kumashiro R; Ueno T; Suganuma T; Furuta K; Namba M; Sugiyama T; Sata M
    Int J Mol Med; 2003 Mar; 11(3):293-8. PubMed ID: 12579329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The loop connecting metal-binding domains 3 and 4 of ATP7B is a target of a kinase-mediated phosphorylation.
    Bartee MY; Ralle M; Lutsenko S
    Biochemistry; 2009 Jun; 48(24):5573-81. PubMed ID: 19405516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Difference in stability of the N-domain underlies distinct intracellular properties of the E1064A and H1069Q mutants of copper-transporting ATPase ATP7B.
    Dmitriev OY; Bhattacharjee A; Nokhrin S; Uhlemann EM; Lutsenko S
    J Biol Chem; 2011 May; 286(18):16355-62. PubMed ID: 21398519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AP-1 recruitment to VAMP4 is modulated by phosphorylation-dependent binding of PACS-1.
    Hinners I; Wendler F; Fei H; Thomas L; Thomas G; Tooze SA
    EMBO Rep; 2003 Dec; 4(12):1182-9. PubMed ID: 14608369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site.
    Doray B; Lee I; Knisely J; Bu G; Kornfeld S
    Mol Biol Cell; 2007 May; 18(5):1887-96. PubMed ID: 17360967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network.
    Petris MJ; Camakaris J; Greenough M; LaFontaine S; Mercer JF
    Hum Mol Genet; 1998 Dec; 7(13):2063-71. PubMed ID: 9817923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal.
    Petris MJ; Mercer JF
    Hum Mol Genet; 1999 Oct; 8(11):2107-15. PubMed ID: 10484781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network.
    Guo Y; Zanetti G; Schekman R
    Elife; 2013 Jan; 2():e00160. PubMed ID: 23326640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defective cellular localization of mutant ATP7B in Wilson's disease patients and hepatoma cell lines.
    Huster D; Hoppert M; Lutsenko S; Zinke J; Lehmann C; Mössner J; Berr F; Caca K
    Gastroenterology; 2003 Feb; 124(2):335-45. PubMed ID: 12557139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polarized trafficking and copper transport activity of ATP7B: A mutational approach to establish genotype-phenotype correlation in Wilson disease.
    Das S; Mohammed A; Mandal T; Maji S; Verma J; Ruturaj ; Gupta A
    Hum Mutat; 2022 Oct; 43(10):1408-1429. PubMed ID: 35762218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Wilson disease mutations revealed that interactions between different ATP7B mutants modify their properties.
    Roy S; McCann CJ; Ralle M; Ray K; Ray J; Lutsenko S; Jayakanthan S
    Sci Rep; 2020 Aug; 10(1):13487. PubMed ID: 32778786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis.
    Wang X; Cai Y; Wang H; Zeng Y; Zhuang X; Li B; Jiang L
    Plant Cell; 2014 Oct; 26(10):4102-18. PubMed ID: 25351491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of tumor resistance to cisplatin mediated by the copper transporter ATP7B.
    Dmitriev OY
    Biochem Cell Biol; 2011 Apr; 89(2):138-47. PubMed ID: 21455266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Structure and function of ATP7A and ATP7B proteins--Cu-transporting ATPases].
    Lenartowicz M; Krzeptowski W
    Postepy Biochem; 2010; 56(3):317-27. PubMed ID: 21117320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.