These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 25378618)
1. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Ghosh I; Ghosh T; Bardagi JI; König B Science; 2014 Nov; 346(6210):725-8. PubMed ID: 25378618 [TBL] [Abstract][Full Text] [Related]
2. Photoactive Metal-Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. He J; Li J; Han Q; Si C; Niu G; Li M; Wang J; Niu J ACS Appl Mater Interfaces; 2020 Jan; 12(2):2199-2206. PubMed ID: 31859478 [TBL] [Abstract][Full Text] [Related]
3. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp Kariofillis SK; Doyle AG Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841 [TBL] [Abstract][Full Text] [Related]
4. Visible Light Mediated Photoredox Catalytic Arylation Reactions. Ghosh I; Marzo L; Das A; Shaikh R; König B Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835 [TBL] [Abstract][Full Text] [Related]
5. Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. Zeng L; Liu T; He C; Shi D; Zhang F; Duan C J Am Chem Soc; 2016 Mar; 138(12):3958-61. PubMed ID: 26956083 [TBL] [Abstract][Full Text] [Related]
6. Radical carbon-carbon bond formations enabled by visible light active photocatalysts. Wallentin CJ; Nguyen JD; Stephenson CR Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282 [TBL] [Abstract][Full Text] [Related]
7. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. Cowper NGW; Chernowsky CP; Williams OP; Wickens ZK J Am Chem Soc; 2020 Feb; 142(5):2093-2099. PubMed ID: 31951393 [TBL] [Abstract][Full Text] [Related]
13. Visible-Light Photocatalytic Reduction of Aryl Halides as a Source of Aryl Radicals. Lan J; Chen R; Duo F; Hu M; Lu X Molecules; 2022 Aug; 27(17):. PubMed ID: 36080129 [TBL] [Abstract][Full Text] [Related]
14. Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. Long B; Ding Z; Wang X ChemSusChem; 2013 Nov; 6(11):2074-8. PubMed ID: 24039175 [TBL] [Abstract][Full Text] [Related]
15. Modifying Parallel Excitations into One Framework for C(sp Shen Q; Chen J; Jing X; Duan C Adv Sci (Weinh); 2024 Sep; 11(36):e2404293. PubMed ID: 39052896 [TBL] [Abstract][Full Text] [Related]
16. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. Hari DP; Schroll P; König B J Am Chem Soc; 2012 Feb; 134(6):2958-61. PubMed ID: 22296099 [TBL] [Abstract][Full Text] [Related]
17. Constructing Quaternary Carbons from N-(Acyloxy)phthalimide Precursors of Tertiary Radicals Using Visible-Light Photocatalysis. Pratsch G; Lackner GL; Overman LE J Org Chem; 2015 Jun; 80(12):6025-36. PubMed ID: 26030520 [TBL] [Abstract][Full Text] [Related]
18. High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis. Chandra S; Pradhan S; Mitra S; Patra P; Bhattacharya A; Pramanik P; Goswami A Nanoscale; 2014 Apr; 6(7):3647-55. PubMed ID: 24562190 [TBL] [Abstract][Full Text] [Related]
19. Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Meyer AU; Slanina T; Heckel A; König B Chemistry; 2017 Jun; 23(33):7900-7904. PubMed ID: 28429580 [TBL] [Abstract][Full Text] [Related]
20. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]