These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 25378618)

  • 41. Direct C(sp
    Shields BJ; Doyle AG
    J Am Chem Soc; 2016 Oct; 138(39):12719-12722. PubMed ID: 27653738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides.
    Punji B; Song W; Shevchenko GA; Ackermann L
    Chemistry; 2013 Aug; 19(32):10605-10. PubMed ID: 23821432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactivity insight into reductive coupling and aldol cyclization of chalcones by visible light photocatalysis.
    Zhao G; Yang C; Guo L; Sun H; Lin R; Xia W
    J Org Chem; 2012 Jul; 77(14):6302-6. PubMed ID: 22731518
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EPR studies of amine radical cations. Part 2. Thermal and photo-induced rearrangements of propargylamine and allylamine radical cations in low-temperature freon matrices.
    Knolle W; Janovský I; Naumov S; Williams F
    J Phys Chem A; 2006 Dec; 110(51):13816-26. PubMed ID: 17181339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis.
    Lee SH; Kim JH; Park CB
    Chemistry; 2013 Apr; 19(14):4392-406. PubMed ID: 23436280
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoredox Catalysis for the Generation of Carbon Centered Radicals.
    Goddard JP; Ollivier C; Fensterbank L
    Acc Chem Res; 2016 Sep; 49(9):1924-36. PubMed ID: 27529633
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanistic insights into two-photon-driven photocatalysis in organic synthesis.
    Marchini M; Gualandi A; Mengozzi L; Franchi P; Lucarini M; Cozzi PG; Balzani V; Ceroni P
    Phys Chem Chem Phys; 2018 Mar; 20(12):8071-8076. PubMed ID: 29516066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles.
    Tucker JW; Narayanam JM; Krabbe SW; Stephenson CR
    Org Lett; 2010 Jan; 12(2):368-71. PubMed ID: 20014770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.
    Zhu S; Das A; Bui L; Zhou H; Curran DP; Rueping M
    J Am Chem Soc; 2013 Feb; 135(5):1823-9. PubMed ID: 23330701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of organic oxidation and reduction by metal complexes.
    Kochi JK
    Science; 1967 Jan; 155(3761):415-24. PubMed ID: 17737550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of Visible-to-UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides.
    Majek M; Faltermeier U; Dick B; Pérez-Ruiz R; Jacobi von Wangelin A
    Chemistry; 2015 Oct; 21(44):15496-501. PubMed ID: 26368791
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light.
    Wang X; Maeda K; Chen X; Takanabe K; Domen K; Hou Y; Fu X; Antonietti M
    J Am Chem Soc; 2009 Feb; 131(5):1680-1. PubMed ID: 19191697
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer.
    Chatterjee A; König B
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14289-14294. PubMed ID: 31379035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of (±)-Tetrabenazine by Visible Light Photoredox Catalysis.
    Orgren LR; Maverick EE; Marvin CC
    J Org Chem; 2015 Dec; 80(24):12635-40. PubMed ID: 26544155
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.
    Zhu XQ; Zhang MT; Yu A; Wang CH; Cheng JP
    J Am Chem Soc; 2008 Feb; 130(8):2501-16. PubMed ID: 18254624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic Enantioselective Radical Transformations Enabled by Visible Light.
    Saha D
    Chem Asian J; 2020 Jul; 15(14):2129-2152. PubMed ID: 32463981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis.
    Banerjee A; Lei Z; Ngai MY
    Synthesis (Stuttg); 2019 Jan; 51(2):303-333. PubMed ID: 31057188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.