These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 25378618)

  • 61. Synthesis of symmetric anhydrides using visible light-mediated photoredox catalysis.
    Konieczynska MD; Dai C; Stephenson CR
    Org Biomol Chem; 2012 Jun; 10(23):4509-11. PubMed ID: 22573373
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Visible-Light Photoinduced Electron Transfer Promoted by Cucurbit[8]uril-Enhanced Charge Transfer Interaction: Toward Improved Activity of Photocatalysis.
    Jiao Y; Xu JF; Wang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22635-22640. PubMed ID: 28605907
    [TBL] [Abstract][Full Text] [Related]  

  • 63. C(sp
    Wakaki T; Sakai K; Enomoto T; Kondo M; Masaoka S; Oisaki K; Kanai M
    Chemistry; 2018 Jun; 24(32):8051-8055. PubMed ID: 29645304
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Combined Photoredox/Enzymatic C-H Benzylic Hydroxylations.
    Betori RC; May CM; Scheidt KA
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16490-16494. PubMed ID: 31465617
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of Arylated Nucleobases by Visible Light Photoredox Catalysis.
    Graml A; Ghosh I; König B
    J Org Chem; 2017 Apr; 82(7):3552-3560. PubMed ID: 28247755
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The water oxidation bottleneck in artificial photosynthesis: how can we get through it? An alternative route involving a two-electron process.
    Inoue H; Shimada T; Kou Y; Nabetani Y; Masui D; Takagi S; Tachibana H
    ChemSusChem; 2011 Feb; 4(2):173-9. PubMed ID: 21271684
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Photoinduced water splitting with oxotitanium porphyrin: a computational study.
    Sobolewski AL; Domcke W
    Phys Chem Chem Phys; 2012 Oct; 14(37):12807-17. PubMed ID: 22880202
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis.
    Hopkinson MN; Sahoo B; Li JL; Glorius F
    Chemistry; 2014 Apr; 20(14):3874-86. PubMed ID: 24596102
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Directed γ-C(sp
    Chen DF; Chu JCK; Rovis T
    J Am Chem Soc; 2017 Oct; 139(42):14897-14900. PubMed ID: 29022709
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photoinduced-electron-transfer chemistry: from studies on PET processes to applications in natural product synthesis.
    Griesbeck AG; Hoffmann N; Warzecha KD
    Acc Chem Res; 2007 Feb; 40(2):128-40. PubMed ID: 17256976
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.
    Ma J; Xie X; Meggers E
    Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Visible-light-induced synthesis of a variety of trifluoromethylated alkenes from potassium vinyltrifluoroborates by photoredox catalysis.
    Yasu Y; Koike T; Akita M
    Chem Commun (Camb); 2013 Mar; 49(20):2037-9. PubMed ID: 23380942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance.
    Yu J; Yang B; Cheng B
    Nanoscale; 2012 Apr; 4(8):2670-7. PubMed ID: 22422167
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Photocatalytic Carboxylation of C-N Bonds in Cyclic Amines with CO
    Chen L; Qu Q; Ran CK; Wang W; Zhang W; He Y; Liao LL; Ye JH; Yu DG
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202217918. PubMed ID: 36680762
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Redox-Active Reagents for Photocatalytic Generation of the OCF
    Zheng W; Lee JW; Morales-Rivera CA; Liu P; Ngai MY
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13795-13799. PubMed ID: 30238593
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.
    Poelma SO; Burnett GL; Discekici EH; Mattson KM; Treat NJ; Luo Y; Hudson ZM; Shankel SL; Clark PG; Kramer JW; Hawker CJ; Read de Alaniz J
    J Org Chem; 2016 Aug; 81(16):7155-60. PubMed ID: 27276418
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Consecutive Photoinduced Electron Transfer (conPET): The Mechanism of the Photocatalyst Rhodamine 6G.
    Brandl F; Bergwinkl S; Allacher C; Dick B
    Chemistry; 2020 Jun; 26(35):7946-7954. PubMed ID: 32100893
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Visible-light-mediated addition of α-aminoalkyl radicals to [60]fullerene by using photoredox catalysts.
    Miyake Y; Ashida Y; Nakajima K; Nishibayashi Y
    Chemistry; 2014 May; 20(20):6120-5. PubMed ID: 24700543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.