These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 25378618)

  • 81. Tailoring photocatalytic nanostructures for sustainable hydrogen production.
    Cargnello M; Diroll BT
    Nanoscale; 2014 Jan; 6(1):97-105. PubMed ID: 24240274
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Electron predators are hydrogen atom traps. Effects of aryl groups on N-C(α) bond dissociations of peptide radicals.
    Tureček F
    J Mass Spectrom; 2010 Nov; 45(11):1280-90. PubMed ID: 20812369
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effects of Nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination.
    Lei Z; Mingyu S; Chao L; Liang C; Hao H; Xiao W; Xiaoqing L; Fan Y; Fengqing G; Fashui H
    Biol Trace Elem Res; 2007 Oct; 119(1):68-76. PubMed ID: 17914221
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation.
    Fukuzumi S; Kato S; Suenobu T
    Phys Chem Chem Phys; 2011 Oct; 13(40):17960-3. PubMed ID: 21931899
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Shape- and size-controlled nanomaterials for artificial photosynthesis.
    Fukuzumi S; Yamada Y
    ChemSusChem; 2013 Oct; 6(10):1834-47. PubMed ID: 23940015
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.
    Liu M; Qiu X; Miyauchi M; Hashimoto K
    J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Urea derivatives enhance the photocatalytic activity of dye-modified titanium dioxide.
    Füldner S; Mitkina T; Trottmann T; Frimberger A; Gruber M; König B
    Photochem Photobiol Sci; 2011 Apr; 10(4):623-5. PubMed ID: 21293823
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Visible light photocatalytic synthesis of benzothiophenes.
    Hari DP; Hering T; König B
    Org Lett; 2012 Oct; 14(20):5334-7. PubMed ID: 23039199
    [TBL] [Abstract][Full Text] [Related]  

  • 91. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures.
    Lavorato C; Primo A; Molinari R; Garcia H
    Chemistry; 2014 Jan; 20(1):187-94. PubMed ID: 24327304
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation.
    Zeng L; Huang L; Lin W; Jiang LH; Han G
    Nat Commun; 2023 Feb; 14(1):1102. PubMed ID: 36843133
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Merging Charge Transfer into Metal-Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation.
    Hou L; Jing X; Huang H; Duan C
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15307-15316. PubMed ID: 35344330
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Structure-Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts.
    McCarthy BG; Pearson RM; Lim CH; Sartor SM; Damrauer NH; Miyake GM
    J Am Chem Soc; 2018 Apr; 140(15):5088-5101. PubMed ID: 29513533
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Redox catalysis
    Lee YM; Nam W; Fukuzumi S
    Chem Sci; 2023 Apr; 14(16):4205-4218. PubMed ID: 37123199
    [TBL] [Abstract][Full Text] [Related]  

  • 96. UVA- and Visible-Light-Mediated Generation of Carbon Radicals from Organochlorides Using Nonmetal Photocatalyst.
    Matsubara R; Yabuta T; Md Idros U; Hayashi M; Ema F; Kobori Y; Sakata K
    J Org Chem; 2018 Aug; 83(16):9381-9390. PubMed ID: 30005575
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Photoinduced electron transport across a lipid bilayer mediated by C70.
    Hwang KC; Mauzerall D
    Nature; 1993 Jan; 361(6408):138-40. PubMed ID: 8421519
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Eosin Y-sensitized artificial photosynthesis by highly efficient visible-light-driven regeneration of nicotinamide cofactor.
    Lee SH; Nam DH; Kim JH; Baeg JO; Park CB
    Chembiochem; 2009 Jul; 10(10):1621-4. PubMed ID: 19551795
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials.
    Ghosh I; König B
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7676-9. PubMed ID: 27198967
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Competitive reaction pathways for o-anilide aryl radicals: 1,5- or 1,6-hydrogen transfer versus nucleophilic coupling reactions. A novel rearrangement to afford an amidyl radical.
    Rey V; Pierini AB; Peñéñory AB
    J Org Chem; 2009 Feb; 74(3):1223-30. PubMed ID: 19138117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.