BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 25378690)

  • 1. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity.
    Aibara I; Miwa K
    Plant Cell Physiol; 2014 Dec; 55(12):2027-36. PubMed ID: 25378690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intracellular transport of transporters: membrane trafficking of mineral transporters.
    Fuji K; Miwa K; Fujiwara T
    Curr Opin Plant Biol; 2009 Dec; 12(6):699-704. PubMed ID: 19836293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transporters involved in mineral nutrient uptake in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2016 Jun; 67(12):3645-53. PubMed ID: 26931170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root uptake regulation: a central process for NPS homeostasis in plants.
    Gojon A; Nacry P; Davidian JC
    Curr Opin Plant Biol; 2009 Jun; 12(3):328-38. PubMed ID: 19501015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions.
    Garcia-Molina A; Andrés-Colás N; Perea-García A; Neumann U; Dodani SC; Huijser P; Peñarrubia L; Puig S
    Plant Cell Physiol; 2013 Aug; 54(8):1378-90. PubMed ID: 23766354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana.
    Hubberten HM; Drozd A; Tran BV; Hesse H; Hoefgen R
    Plant J; 2012 Nov; 72(4):625-35. PubMed ID: 22775482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and flexible uptake system for mineral elements in plants.
    Che J; Yamaji N; Ma JF
    New Phytol; 2018 Jul; 219(2):513-517. PubMed ID: 29633285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Response of fine roots to soil nutrient spatial heterogeneity].
    Wang Q; Cheng Y
    Ying Yong Sheng Tai Xue Bao; 2004 Jun; 15(6):1063-8. PubMed ID: 15362636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis.
    Gao YQ; Chao DY
    Plant J; 2022 Dec; 112(6):1350-1363. PubMed ID: 36321185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability.
    Mounier E; Pervent M; Ljung K; Gojon A; Nacry P
    Plant Cell Environ; 2014 Jan; 37(1):162-74. PubMed ID: 23731054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics dissection of plant responses to mineral nutrient deficiency.
    Liang C; Tian J; Liao H
    Proteomics; 2013 Feb; 13(3-4):624-36. PubMed ID: 23193087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underground tuning: quantitative regulation of root growth.
    Satbhai SB; Ristova D; Busch W
    J Exp Bot; 2015 Feb; 66(4):1099-112. PubMed ID: 25628329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis.
    Wintz H; Fox T; Wu YY; Feng V; Chen W; Chang HS; Zhu T; Vulpe C
    J Biol Chem; 2003 Nov; 278(48):47644-53. PubMed ID: 13129917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.
    Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK
    Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of root architecture development to low phosphorus availability: a review.
    Niu YF; Chai RS; Jin GL; Wang H; Tang CX; Zhang YS
    Ann Bot; 2013 Jul; 112(2):391-408. PubMed ID: 23267006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A holistic view of nitrogen acquisition in plants.
    Kraiser T; Gras DE; Gutiérrez AG; González B; Gutiérrez RA
    J Exp Bot; 2011 Feb; 62(4):1455-66. PubMed ID: 21239377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation.
    Maruyama-Nakashita A; Nakamura Y; Yamaya T; Takahashi H
    J Exp Bot; 2004 Aug; 55(404):1843-9. PubMed ID: 15208340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.