These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25379084)

  • 21. Coarse-grained modelling of surface nanobubbles.
    Grosfils P
    J Phys Condens Matter; 2013 May; 25(18):184006. PubMed ID: 23598798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the interaction between AFM tips and surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced fluctuation for pinned surface nanobubbles.
    Guo Z; Zhang X
    Phys Rev E; 2019 Nov; 100(5-1):052803. PubMed ID: 31869961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions.
    Zhang XH; Maeda N; Craig VS
    Langmuir; 2006 May; 22(11):5025-35. PubMed ID: 16700590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation?
    Yasui K; Tuziuti T; Izu N; Kanematsu W
    Ultrason Sonochem; 2019 Apr; 52():13-18. PubMed ID: 30606678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.
    Maheshwari S; van der Hoef M; Rodrı Guez Rodrı Guez J; Lohse D
    ACS Nano; 2018 Mar; 12(3):2603-2609. PubMed ID: 29438620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale pinning effect evaluated from deformed nanobubbles.
    Teshima H; Nishiyama T; Takahashi K
    J Chem Phys; 2017 Jan; 146(1):014708. PubMed ID: 28063422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of induced nanobubbles from water/graphite interfaces by partial degassing.
    Zhang XH; Li G; Maeda N; Hu J
    Langmuir; 2006 Oct; 22(22):9238-43. PubMed ID: 17042536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Experimental Study on Bubble Collapsing Effect of Nanobubble Using Ultrasonic Wave.
    Kim M; Song S; Kim W; Han JG
    J Nanosci Nanotechnol; 2020 Jan; 20(1):636-642. PubMed ID: 31383225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.
    Walczyk W; Schön PM; Schönherr H
    J Phys Condens Matter; 2013 May; 25(18):184005. PubMed ID: 23598774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanobubbles do not sit alone at the solid-liquid interface.
    Peng H; Hampton MA; Nguyen AV
    Langmuir; 2013 May; 29(20):6123-30. PubMed ID: 23597206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability, Dynamics, and Tolerance to Undersaturation of Surface Nanobubbles.
    Tan BH; An H; Ohl CD
    Phys Rev Lett; 2019 Apr; 122(13):134502. PubMed ID: 31012604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale gas accumulation at solid-liquid interfaces: a molecular dynamics study.
    Varghese B; Sathian SP
    Phys Chem Chem Phys; 2022 Sep; 24(36):22298-22308. PubMed ID: 36098219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanobubbles and micropancakes: gaseous domains on immersed substrates.
    Seddon JR; Lohse D
    J Phys Condens Matter; 2011 Apr; 23(13):133001. PubMed ID: 21415481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles.
    Tarábková H; Janda P
    J Phys Condens Matter; 2013 May; 25(18):184001. PubMed ID: 23598572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid-Coated Nanobubbles in Plants.
    Ingram S; Jansen S; Schenk HJ
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the "Gas Tunnel" between Neighboring Nanobubbles.
    Li D; Zeng B; Wang Y
    Langmuir; 2019 Nov; 35(47):15029-15037. PubMed ID: 31702925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave-Induced Interfacial Nanobubbles.
    Wang L; Miao X; Pan G
    Langmuir; 2016 Nov; 32(43):11147-11154. PubMed ID: 27238206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescence.
    Nag S; Tomo Y; Teshima H; Takahashi K; Kohno M
    Phys Chem Chem Phys; 2021 Nov; 23(43):24652-24660. PubMed ID: 34704571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water.
    Zhou L; Wang X; Shin HJ; Wang J; Tai R; Zhang X; Fang H; Xiao W; Wang L; Wang C; Gao X; Hu J; Zhang L
    J Am Chem Soc; 2020 Mar; 142(12):5583-5593. PubMed ID: 32111116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.