These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25379087)

  • 1. Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence.
    Shi Y; Fox RO; Olsen MG
    Biomicrofluidics; 2014 Jul; 8(4):044102. PubMed ID: 25379087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive mixing performance for a nanoparticle precipitation in a swirling vortex flow reactor.
    Liu L; Yang X; Guo Y; Li B; Wang LP
    Ultrason Sonochem; 2023 Mar; 94():106332. PubMed ID: 36821933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of ultrasound-induced cavitation on the fluid dynamics of water and sewage sludge in ultrasonic flatbed reactors.
    Lippert T; Bandelin J; Schlederer F; Drewes JE; Koch K
    Ultrason Sonochem; 2019 Jul; 55():217-222. PubMed ID: 30712849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy.
    Park T; Lee M; Choo J; Kim YS; Lee EK; Kim DJ; Lee SH
    Appl Spectrosc; 2004 Oct; 58(10):1172-9. PubMed ID: 15527517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic instability micromixing.
    Oddy MH; Santiago JG; Mikkelsen JC
    Anal Chem; 2001 Dec; 73(24):5822-32. PubMed ID: 11791550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of mass transfer in mixing processes in high solid anaerobic digestion using Laser Induced Fluorescence (LIF) technique.
    Hu Y; Zhang S; Wang X; Peng X; Hu F; Wang C; Wu J; Poncin S; Li HZ
    Waste Manag; 2021 May; 127():121-129. PubMed ID: 33933869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulence in a microscale planar confined impinging-jets reactor.
    Liu Y; Olsen MG; Fox RO
    Lab Chip; 2009 Apr; 9(8):1110-8. PubMed ID: 19350093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tri-fluid mixing in a microchannel for nanoparticle synthesis.
    Feng X; Ren Y; Hou L; Tao Y; Jiang T; Li W; Jiang H
    Lab Chip; 2019 Sep; 19(17):2936-2946. PubMed ID: 31380864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscale Chaotic Mixing as a Driver for Chemical Reactions in Porous Media.
    Sanquer H; Heyman J; Hanna K; Le Borgne T
    Environ Sci Technol; 2024 May; 58(20):8899-8908. PubMed ID: 38710098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional-Printed Vortex Tube Reactor for Continuous Flow Synthesis of Polyglycolic Acid Nanoparticles with High Productivity.
    Suwanpitak K; Sriamornsak P; Singh I; Sangnim T; Huanbutta K
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultrashort mixing length micromixer: the shear superposition micromixer.
    Bottausci F; Cardonne C; Meinhart C; Mezić I
    Lab Chip; 2007 Mar; 7(3):396-8. PubMed ID: 17330174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on the Effect of Flow Unsteadiness on the Yield of a Chemical Reaction in a T Micro-Reactor.
    Mariotti A; Antognoli M; Galletti C; Mauri R; Salvetti MV; Brunazzi E
    Micromachines (Basel); 2021 Feb; 12(3):. PubMed ID: 33673667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV reactor flow visualization and mixing quantification using three-dimensional laser-induced fluorescence.
    Gandhi V; Roberts PJ; Stoesser T; Wright H; Kim JH
    Water Res; 2011 Jul; 45(13):3855-62. PubMed ID: 21612811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid circular microfluidic mixer utilizing unbalanced driving force.
    Lin CH; Tsai CH; Pan CW; Fu LM
    Biomed Microdevices; 2007 Feb; 9(1):43-50. PubMed ID: 17106640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced mixing in laminar flows using ultrahydrophobic surfaces.
    Ou J; Moss GR; Rothstein JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016304. PubMed ID: 17677560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Characterisation and Analysis of a Passive Micro Heat Exchanger.
    Granados-Ortiz FJ; Ortega-Casanova J
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32660001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic performance assessment of photocatalytic reactor with baffles and roughness in the flow path: A modelling approach with experimental validation.
    Rasul MG; Ahmed S; Sattar MA; Jahirul MI
    Heliyon; 2023 Sep; 9(9):e19623. PubMed ID: 37809384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing and quantifying dose distribution in a UV reactor using three-dimensional laser-induced fluorescence.
    Gandhi VN; Roberts PJ; Kim JH
    Environ Sci Technol; 2012 Dec; 46(24):13220-6. PubMed ID: 23151024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.