BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25379092)

  • 1. Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis.
    Huang C; Smith JP; Saha TN; Rhim AD; Kirby BJ
    Biomicrofluidics; 2014 Jul; 8(4):044107. PubMed ID: 25379092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system.
    Huang C; Liu H; Bander NH; Kirby BJ
    Biomed Microdevices; 2013 Dec; 15(6):941-8. PubMed ID: 23807279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
    Huang C; Santana SM; Liu H; Bander NH; Hawkins BG; Kirby BJ
    Electrophoresis; 2013 Nov; 34(20-21):2970-9. PubMed ID: 23925921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.
    Smith JP; Huang C; Kirby BJ
    Biomicrofluidics; 2015 Jan; 9(1):014116. PubMed ID: 25759749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis.
    Thege FI; Lannin TB; Saha TN; Tsai S; Kochman ML; Hollingsworth MA; Rhim AD; Kirby BJ
    Lab Chip; 2014 May; 14(10):1775-84. PubMed ID: 24681997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic System for the Isolation of High-Purity CD45
    Liao CJ; Hsieh CH; Chiu TK; Zhu YX; Wang HM; Hung FC; Chou WP; Wu MH
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture.
    Smith JP; Lannin TB; Syed Y; Santana SM; Kirby BJ
    Biomed Microdevices; 2014 Feb; 16(1):143-51. PubMed ID: 24078270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs with high purity using preferential adherence in breast cancer patients.
    Loeian MS; Mehdi Aghaei S; Farhadi F; Rai V; Yang HW; Johnson MD; Aqil F; Mandadi M; Rai SN; Panchapakesan B
    Lab Chip; 2019 Jun; 19(11):1899-1915. PubMed ID: 31049504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells.
    Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y
    Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer.
    Schneck H; Gierke B; Uppenkamp F; Behrens B; Niederacher D; Stoecklein NH; Templin MF; Pawlak M; Fehm T; Neubauer H;
    PLoS One; 2015; 10(12):e0144535. PubMed ID: 26695635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis.
    Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK
    Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of antibody-coated, physical-based microfluidic chip with wave-shaped arrays for isolating circulating tumor cells.
    Chen H; Cao B; Chen H; Lin YS; Zhang J
    Biomed Microdevices; 2017 Sep; 19(3):66. PubMed ID: 28776234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, Detection, and Antigen-Based Profiling of Circulating Tumor Cells Using a Size-Dictated Immunocapture Chip.
    Ahmed MG; Abate MF; Song Y; Zhu Z; Yan F; Xu Y; Wang X; Li Q; Yang C
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10681-10685. PubMed ID: 28675606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification.
    Lin SH; Su TC; Huang SJ; Jen CP
    Electrophoresis; 2024 Jan; ():. PubMed ID: 38175846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of tumor cells with dielectrophoresis-based microfluidic chip.
    Alshareef M; Metrakos N; Juarez Perez E; Azer F; Yang F; Yang X; Wang G
    Biomicrofluidics; 2013; 7(1):11803. PubMed ID: 24403985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.
    Ates HC; Ozgur E; Kulah H
    Biointerphases; 2018 Mar; 13(2):021001. PubMed ID: 29571263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of circulating tumor cells by dielectrophoresis.
    Gascoyne PR; Shim S
    Cancers (Basel); 2014 Mar; 6(1):545-79. PubMed ID: 24662940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the CellSearch(®) CTC test.
    Adams DL; Stefansson S; Haudenschild C; Martin SS; Charpentier M; Chumsri S; Cristofanilli M; Tang CM; Alpaugh RK
    Cytometry A; 2015 Feb; 87(2):137-44. PubMed ID: 25515318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.