These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 25379098)
1. Droplet-based microfluidic washing module for magnetic particle-based assays. Lee H; Xu L; Oh KW Biomicrofluidics; 2014 Jul; 8(4):044113. PubMed ID: 25379098 [TBL] [Abstract][Full Text] [Related]
2. A journey of trains of droplets in droplet-based microfluidic devices. Lee H; Xu L; Oh KW Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():778-81. PubMed ID: 25570074 [TBL] [Abstract][Full Text] [Related]
3. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields. Sahore V; Doonan SR; Bailey RC Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651 [TBL] [Abstract][Full Text] [Related]
4. Parallel synchronization of two trains of droplets using a railroad-like channel network. Ahn B; Lee K; Lee H; Panchapakesan R; Oh KW Lab Chip; 2011 Dec; 11(23):3956-62. PubMed ID: 21993857 [TBL] [Abstract][Full Text] [Related]
5. A droplet-to-digital (D2D) microfluidic device for single cell assays. Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549 [TBL] [Abstract][Full Text] [Related]
6. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes. Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Sista RS; Eckhardt AE; Srinivasan V; Pollack MG; Palanki S; Pamula VK Lab Chip; 2008 Dec; 8(12):2188-96. PubMed ID: 19023486 [TBL] [Abstract][Full Text] [Related]
8. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Xu L; Lee H; Panchapakesan R; Oh KW Lab Chip; 2012 Oct; 12(20):3936-42. PubMed ID: 22814673 [TBL] [Abstract][Full Text] [Related]
9. Droplet CAR-Wash: continuous picoliter-scale immunocapture and washing. Doonan SR; Lin M; Bailey RC Lab Chip; 2019 Apr; 19(9):1589-1598. PubMed ID: 30963149 [TBL] [Abstract][Full Text] [Related]
10. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics. Doonan SR; Bailey RC Anal Chem; 2017 Apr; 89(7):4091-4099. PubMed ID: 28222260 [TBL] [Abstract][Full Text] [Related]
11. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Peyman SA; Iles A; Pamme N Lab Chip; 2009 Nov; 9(21):3110-7. PubMed ID: 19823727 [TBL] [Abstract][Full Text] [Related]
13. Magnetic Beads inside Droplets for Agitation and Splitting Manipulation by Utilizing a Magnetically Actuated Platform. Lin JL; Hsu PP; Kuo JN Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512660 [TBL] [Abstract][Full Text] [Related]
14. Flow field induced particle accumulation inside droplets in rectangular channels. Hein M; Moskopp M; Seemann R Lab Chip; 2015 Jul; 15(13):2879-86. PubMed ID: 26032835 [TBL] [Abstract][Full Text] [Related]
15. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Zagnoni M; Cooper JM Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980 [TBL] [Abstract][Full Text] [Related]
16. Multiple splitting of droplets using multi-furcating microfluidic channels. Li Z; Li L; Liao M; He L; Wu P Biomicrofluidics; 2019 Mar; 13(2):024112. PubMed ID: 31065311 [TBL] [Abstract][Full Text] [Related]
17. Cell Washing and Solution Exchange in Droplet Microfluidic Systems. Huang C; Zhang H; Han SI; Han A Anal Chem; 2021 Jun; 93(24):8622-8630. PubMed ID: 34110770 [TBL] [Abstract][Full Text] [Related]
18. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules. Alorabi AQ; Tarn MD; Gómez-Pastora J; Bringas E; Ortiz I; Paunov VN; Pamme N Lab Chip; 2017 Nov; 17(22):3785-3795. PubMed ID: 28991297 [TBL] [Abstract][Full Text] [Related]
19. Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging. Nan L; Mao T; Shum HC Microsyst Nanoeng; 2023; 9():24. PubMed ID: 36910256 [TBL] [Abstract][Full Text] [Related]
20. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Mazutis L; Baret JC; Treacy P; Skhiri Y; Araghi AF; Ryckelynck M; Taly V; Griffiths AD Lab Chip; 2009 Oct; 9(20):2902-8. PubMed ID: 19789742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]