These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25379101)

  • 1. A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
    Chang JY; Wang S; Allen JS; Lee SH; Chang ST; Choi YK; Friedrich C; Choi CK
    Biomicrofluidics; 2014 Jul; 8(4):044116. PubMed ID: 25379101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.
    Fu X; Mavrogiannis N; Doria S; Gagnon Z
    Lab Chip; 2015 Sep; 15(17):3600-8. PubMed ID: 26053965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.
    Esquivel JP; Castellarnau M; Senn T; Löchel B; Samitier J; Sabaté N
    Lab Chip; 2012 Jan; 12(1):74-9. PubMed ID: 22072241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture.
    Xu ZR; Yang CG; Liu CH; Zhou Z; Fang J; Wang JH
    Talanta; 2010 Jan; 80(3):1088-93. PubMed ID: 20006057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical power free, low dead volume, pressure-driven pumping for microfluidic applications.
    Moscovici M; Chien WY; Abdelgawad M; Sun Y
    Biomicrofluidics; 2010 Oct; 4(4):46501. PubMed ID: 21057609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.
    Yuan Q; Wu J
    Biomed Microdevices; 2013 Feb; 15(1):125-33. PubMed ID: 22932955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic pumping in microchips with nonhomogeneous distribution of electrolytes.
    Chien RL; Bousse L
    Electrophoresis; 2002 Jun; 23(12):1862-9. PubMed ID: 12116129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics.
    Huang CC; Bazant MZ; Thorsen T
    Lab Chip; 2010 Jan; 10(1):80-5. PubMed ID: 20024054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple open-channel electroosmotic pumping system for microfluidic sample handling.
    Lazar IM; Karger BL
    Anal Chem; 2002 Dec; 74(24):6259-68. PubMed ID: 12510747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive fluidic diode for simple fluids using nested nanochannel structures.
    Mo J; Li L; Wang J; Li Z
    Phys Rev E; 2016 Mar; 93(3):033101. PubMed ID: 27078441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remotely powered self-propelling particles and micropumps based on miniature diodes.
    Chang ST; Paunov VN; Petsev DN; Velev OD
    Nat Mater; 2007 Mar; 6(3):235-40. PubMed ID: 17293850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Origin of Electro-osmotic Flow Hysteresis.
    Lim CY; Lim AE; Lam YC
    Sci Rep; 2016 Feb; 6():22329. PubMed ID: 26923197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane.
    Park S; Yossifon G
    Nanoscale; 2018 Jun; 10(24):11633-11641. PubMed ID: 29896609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically actuated, pressure-driven microfluidic pumps.
    Munyan JW; Fuentes HV; Draper M; Kelly RT; Woolley AT
    Lab Chip; 2003 Nov; 3(4):217-20. PubMed ID: 15007448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.