These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25379647)

  • 21. [Determination of trolline in flowers of Trollius chinensis by HPLC].
    Wang R; Ma Q; Yang J
    Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(2):247-9. PubMed ID: 22737861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity directed investigation on anti-inflammatory fractions and compounds from flowers of Trollius chinensis.
    Wang R; Wu X; Liu L; An Y
    Pak J Pharm Sci; 2014 Mar; 27(2):285-8. PubMed ID: 24577916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flavone C-glycosides from the flowers of Trollius chinensis and their anti-complementary activity.
    Liu JY; Li SY; Feng JY; Sun Y; Cai JN; Sun XF; Yang SL
    J Asian Nat Prod Res; 2013; 15(4):325-31. PubMed ID: 23600593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of Two bioactive compounds in flowers of Trollius chinensis.
    Yuan M; An YN; Wang RF; Ding Y; Sun ZX
    J Chromatogr Sci; 2014; 52(5):466-9. PubMed ID: 23753470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis.
    Song Z; Hashi Y; Sun H; Liang Y; Lan Y; Wang H; Chen S
    Fitoterapia; 2013 Dec; 91():272-279. PubMed ID: 24060911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network pharmacology-based identifcation of potential targets of the flower of Trollius chinensis Bunge acting on anti-inflammatory effectss.
    Liang JW; Wang MY; Olounfeh KM; Zhao N; Wang S; Meng FH
    Sci Rep; 2019 May; 9(1):8109. PubMed ID: 31147584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural effects of phenolic acids on the transepithelial transport of fluorescein in caco-2 cell monolayers.
    Konishi Y; Kubo K; Shimizu M
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):2014-7. PubMed ID: 14519994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Study on the chemical composition of leaves and stalks of Trollius macropetalus].
    Liu LJ; Wang XK; Kuang HX
    Yao Xue Xue Bao; 1992; 27(11):837-40. PubMed ID: 1300028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radical scavenging activity of flavonoids from Trollius chinensis Bunge.
    Li H; Zhang M; Ma G
    Nutrition; 2011 Oct; 27(10):1061-5. PubMed ID: 21820869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Quality testing and quality classification standard establishment of Trollius chinensis seeds].
    Zhao D; Li Y; Ding W; Ding J; Sun Z
    Zhongguo Zhong Yao Za Zhi; 2011 Dec; 36(24):3421-4. PubMed ID: 22368848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The genus Trollius-review of pharmacological and chemical research.
    Witkowska-Banaszczak E
    Phytother Res; 2015 Apr; 29(4):475-500. PubMed ID: 25573081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation on Flos Trollii: constituents and bioactivities.
    Yuan M; Wang RF; Wu XW; An YN; Yang XW
    Chin J Nat Med; 2013 Sep; 11(5):449-55. PubMed ID: 24359766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A phenolic extract from grape by-products and its main hydroxybenzoic acids protect Caco-2 cells against pro-oxidant induced toxicity.
    Wang S; Mateos R; Goya L; Amigo-Benavent M; Sarriá B; Bravo L
    Food Chem Toxicol; 2016 Feb; 88():65-74. PubMed ID: 26708231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in in vitro evaluation of phenolic acid availability.
    Konishi Y; Hagiwara K; Shimizu M
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2449-57. PubMed ID: 12506986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavone C-glycosides from flowers of Trollius ledebouri.
    Zou JH; Yang JS; Dong YS; Zhou L; Lin G
    Phytochemistry; 2005 May; 66(10):1121-5. PubMed ID: 15924917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The antiviral mechanism of the crude extract from the flowers of Trollius chinensis based on TLR 3 signaling pathway.
    Liu LJ; Li DI; Fang MY; Liu SY; Wang QQ; Liang YX; Hu XH; Wang RF
    Pak J Pharm Sci; 2021 Sep; 34(5):1743-1748. PubMed ID: 34803011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique.
    Chen F; Zhang Q; Liu J; Gu H; Yang L
    Ultrason Sonochem; 2017 Jul; 37():267-278. PubMed ID: 28427633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination and pharmacokinetics of orientin in rabbit plasma by liquid chromatography after intravenous administration of orientin and Trollius chinensis Bunge extract.
    Li X; Huo T; Qin F; Lu X; Li F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 853(1-2):221-6. PubMed ID: 17416555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid.
    Farhoosh R; Johnny S; Asnaashari M; Molaahmadibahraseman N; Sharif A
    Food Chem; 2016 Mar; 194():128-34. PubMed ID: 26471535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative pharmacokinetics study of orientin in rat plasma by UHPLC-MS/MS after intravenous administration of single orientin and Trollius chinensis Bunge extract.
    Zhao N; Sun Q; Song Y; Wang L; Zhang T; Meng F
    Biomed Chromatogr; 2018 Apr; 32(4):. PubMed ID: 29148582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.