These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25379837)

  • 21. Recent achievments in the design and engineering of artificial metalloenzymes.
    Dürrenberger M; Ward TR
    Curr Opin Chem Biol; 2014 Apr; 19():99-106. PubMed ID: 24608081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanistic insights into different aspects of promiscuity in metalloenzymes.
    Tripathi A; Dubey KD
    Adv Protein Chem Struct Biol; 2024; 141():23-66. PubMed ID: 38960476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalyst design in oxidation chemistry; from KMnO4 to artificial metalloenzymes.
    Doble MV; Ward AC; Deuss PJ; Jarvis AG; Kamer PC
    Bioorg Med Chem; 2014 Oct; 22(20):5657-77. PubMed ID: 25126712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin.
    Pordea A; Creus M; Panek J; Duboc C; Mathis D; Novic M; Ward TR
    J Am Chem Soc; 2008 Jun; 130(25):8085-8. PubMed ID: 18507383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional non-heme iron metalloenzyme model systems.
    Caradonna JP; Stassinopoulos A
    Adv Inorg Biochem; 1994; 9():245-315. PubMed ID: 8140949
    [No Abstract]   [Full Text] [Related]  

  • 29. Preparation of artificial metalloenzymes by insertion of chromium(III) Schiff base complexes into apomyoglobin mutants.
    Ohashi M; Koshiyama T; Ueno T; Yanase M; Fujii H; Watanabe Y
    Angew Chem Int Ed Engl; 2003 Mar; 42(9):1005-8. PubMed ID: 12616550
    [No Abstract]   [Full Text] [Related]  

  • 30. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.
    Gamenara D; Domínguez de María P
    Org Biomol Chem; 2014 May; 12(19):2989-92. PubMed ID: 24695640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton-induced dynamic equilibrium between cyclometalated ruthenium rNHC (remote N-heterocyclic carbene) tautomers with an NAD+/NADH function.
    Padhi SK; Kobayashi K; Masuno S; Tanaka K
    Inorg Chem; 2011 Jun; 50(12):5321-3. PubMed ID: 21615114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct and indirect electrochemical investigations of metalloenzymes.
    Hill HA; Hunt NI
    Methods Enzymol; 1993; 227():501-22. PubMed ID: 8255235
    [No Abstract]   [Full Text] [Related]  

  • 33. Metalloprotein mimics - old tools in a new light.
    Happe T; Hemschemeier A
    Trends Biotechnol; 2014 Apr; 32(4):170-6. PubMed ID: 24630475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial metalloenzymes: proteins as hosts for enantioselective catalysis.
    Thomas CM; Ward TR
    Chem Soc Rev; 2005 Apr; 34(4):337-46. PubMed ID: 15778767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The protein environment drives selectivity for sulfide oxidation by an artificial metalloenzyme.
    Rousselot-Pailley P; Bochot C; Marchi-Delapierre C; Jorge-Robin A; Martin L; Fontecilla-Camps JC; Cavazza C; Ménage S
    Chembiochem; 2009 Feb; 10(3):545-52. PubMed ID: 19137535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of artificial backbone connectivity in the development of metalloenzyme mimics.
    Wolfe JA; Horne WS
    Curr Opin Chem Biol; 2024 Aug; 81():102509. PubMed ID: 39098212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective oxidation of aromatic sulfide catalyzed by an artificial metalloenzyme: new activity of hemozymes.
    Ricoux R; Allard M; Dubuc R; Dupont C; Maréchal JD; Mahy JP
    Org Biomol Chem; 2009 Aug; 7(16):3208-11. PubMed ID: 19641774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in NADH electrochemical sensing design.
    Radoi A; Compagnone D
    Bioelectrochemistry; 2009 Sep; 76(1-2):126-34. PubMed ID: 19608463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric δ-Lactam Synthesis with a Monomeric Streptavidin Artificial Metalloenzyme.
    Hassan IS; Ta AN; Danneman MW; Semakul N; Burns M; Basch CH; Dippon VN; McNaughton BR; Rovis T
    J Am Chem Soc; 2019 Mar; 141(12):4815-4819. PubMed ID: 30865436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.